
ON THE HOMOLOGY OF FIBER SPACES

MICHAEL GINSBURG1

Let (F, T, X, it) be a fiber space, with fiber F, base X, total space

T, and fiber map -k. A general problem of great interest is that of

computing the homology groups of one of the spaces involved, usually

F or T, in terms of the homology groups of the other two spaces and,

perhaps, some other invariants of the fiber space. In this paper we

show how the Lusternik-Schnirelmann category of X enters into this

problem and affects the relations which may exist between the ho-

mology groups of F, T, and X.

Our main results are stated as theorems and corollaries in §§3 and 4

of this paper, and are summarized here. Let QX denote the space of

loops on X. If cat(X)^/e, we obtain a spectral sequence, Er, which

relates H(F) and H(QX) with H(T) and for which the differentials,

dr, and groups, ÈP, vanish if r, p^k. If cat(X)^2, we obtain an

infinite exact sequence relating H(X), H(F), and H(T) which gen-

eralizes the Wang sequence. This allows us to compute the additive

structure of H(&X) and to partially determine the Pontryagin ring

H*(ttX). We also consider the Leray-Serre spectral sequence of the

fiber space and essentially compute all the differentials if cat(X) ^2.

Our method is to replace the chain group of T by a twisted tensor

product, BA®C(F), where C(Y) denotes the group of chains of

Y, A = C(fiX), and BA is the "bar construction" on A. We then apply

certain results of [5] which relate cat(X) and BA. The necessary

definitions and preliminary material are covered in §§1 and 2, while

the proofs of the main theorems are in §5.

Some related results are contained in [6]. In that paper we also

obtain some results involving the "category of a map," similar to

those obtained here by using the "category of a space."

1. Fiber spaces. Let X be a space with base point xo. Let PX de-

note the space of Moore paths on X (see [3]). Thus if R+ denotes the

non-negative real numbers and J,= [0, r] for rER+, then

PX = {ar\   ar:Ir^X,rE R+\.

A product, ar-ßs, is defined in PX if ar(r)=ßs(0).  If we let EX

= {arEPX\ ar(r)=x0]   and p:EX—>X be given by p(ar)=ar(0),
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then p is a map. ÜX = p~1(xo), called the loop-space of X, is an associ-

ative iï-space.

For convenience of notation we will identify the constant paths

of PX with the points of X. Thus, the path a0: in—»x will be denoted

simply by x. In this way, x0 becomes the unit for the multiplication

in PA.

Let ir: T—>X be a map and let

U, = {(aT, t)EPXXT\  ar(r) = *(/)}.

A lifting function for ir is a map X: UT—>T such that

1. 7rX(ar,/)=«r(0);

2. X(x, t)=tior allxGA.

The lifting function X is called weakly transitive if

\(ar-ßs, t) = \(ar, \(ßs, t))

whenever ar(r) =ßs(0)=x0 and (ßs, t)EU*. We will call (F, T, X, ir, X)

a (weakly transitive) fiber space if X is a (weakly transitive) lifting

function for the map ir: T—»A. P = 7r-1(x0) is called the fiber.

It is easy to show that our definition of fiber space is equivalent to

requiring that ir have the strong covering homotopy property for all

spaces. Furthermore, every fiber space is fiber-homotopically equiva-

lent to a weakly-transitive one, as noted by Brown [2]. An example

of a fiber space which actually admits a weakly transitive lifting

function is (ÜX, EX, X, p).
Let A be a DGA algebra over the ring Z of integers, and let BA

denote the bar construction on A (see [3] or [4]). The notation in-

volved in the definition of BA is

J = A/Z,

J" = Z,

Ak = A ® ■ ■ ■ ® A, k times, k è 1,

fc=O0

BA = ^ Ah, the direct sum.
fc=0

As usual, we write [ai, • • ■ , ak] for ax® • • • ®akEAk and [ ] for

the unit of A0. BA is a chain complex with differential d and a grada-

tion given by
<-*

degree [oi, • • • , ak] = k + 2 degree úSj
¿=i

for ai homogeneous elements of A. Let 23„^4 denote the elements of

BA of degree n, and let BnA = X^S ^*-
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Let C(Y) denote the group of normalized singular chains of the

space F. We will adopt the convention that if F is arcwise connected,

C(Y) will mean chains whose vertices are all at the base point of Y.

Now let (F, T, X, it, X) be a weakly-transitive fiber space. A = C(Í2X)

is a DGA algebra [3 ], while by restriction, X induces a map ßXX F—>F

which in the usual way induces a map X: A ®C(F)^>C(F). X thus

defines an A -module structure on C(F), and we will write \(a®b)

= a-b. Let BA®C(F) denote the usual tensor product of graded

groups, with the twisted differential d defined by

d([ai, ■ • • , ak] ® c) = d[au ■ • • , ak] ® c + (—l)p[ai, • • • , ak] ® dc

+ (-1)*+degree <.*[aij • • • , a*_i] ® ak-c,

for ttj homogeneous elements of A, cEC(F), and degree [di, ■ ■ ■ , ak]

= p. It is shown in [2] that BA®C(F) is a chain complex; the sub-

complex Z®C(F) is isomorphic, as a chain complex, to C(F) and

will be denoted simply C(F).

Let Dn=TJï-ÔBkA®C(F). Then Da=C(F), DnQDn+1, and the
subcomplexes Di form a filtration of BA ®C(F). This gives rise, in

the usual way, to a spectral sequence Èr.

Theorem 1.1. If(F, T, X, w, X) is a weakly transitive fiber space and

7Ti(X) = 0, then

(i) the exact homology sequence of the pair (T, F) is isomorphic to

that of the pair (BA ®C(F), C(F)) ;
(ii) for rà2, the spectral sequence Ër is isomorphic to the Leray-

Serre spectral sequence (see [8]) of the fiber map ir.

This proposition is merely a résumé of statements in [2].

2. Category. Let X* denote the ¿-fold cartesian product of X, and

let

Tk(X) = {(xh • ■ ■ ,xk) E Xh\  Xi = xo for some 1 ^ i ^ k}.

Choose xl as the base point of both Xk and Tk(X). Then by defini-

tion cat(X) ^ k if and only if the diagonal map of X into Xh can be

deformed, preserving the base points, into Th(X). This is equivalent

to the classical definition if X is separable, metric, an ANR, and Xo

is a nondegenerate base point in the sense of Puppe [7]. (Classically,

cat(X)i=/e if X can be covered by k open (or closed) sets each of

which is contractible to a point in X.)

Again let A = C(ßX), and let/: BnA-^BA be the inclusion map.

Theorem 2.1. // 7ri(X) = 0 and cat(X) ^k, there exists a chain map
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6: BA-+Bk-1A such that /*0*: H(BA)—>H(BA) is the identity isomor-

phism.

Proof. The author has constructed spaces W and Wk-i, Wk-iÇ. W,

and maps <j>, \p, p, and / such that the diagram

BA-Î— C(W) —!—* C(X)

Bk-iA->C(Wk-i)

is commutative, where i is induced by inclusion. Furthermore <f>, ip<

and p are chain equivalences (see [5, Theorem 3.3 and the proof of

Theorem 2.2]). Let ip~l be any chain inverse to ip, and define

6 = \¡/~1fp4>. 6 is then a chain map. Since Or'-1)* is really the isomor-

phism inverse to $*, and i*f* = p*1, we have

j*0* = y*^*-1/*^*^* = (p+Hxfxp+iJHf = c/)*-1/)*"1/)*^* = id.

It follows from Theorem 2.1 that if cat(A) ^2 and (F, T, X, ir, X)

is a weakly transitive fiber space, we can define a map X*: HP(XXF)

—>Hp^i(F) as follows. Let A = C(£IX) be written as the direct sum

Ä+Z. Then the map 5: B'A-^A, defined by 5[a] = a and 5[ ] = 0,

lowers the degree by 1 unit and anti-commutes with the boundary

operators (see [3]). It is simple to check that Sd®l: BA ®C(F)

-^A ® C(F) has the same property. Then the map \(Sd ® 1) : BA ® C(F)

—>C(£) induces the desired map X* on homology groups. In the next

section we will study this map X*.

3. The case cat(A) Si 2. In this section it will always be assumed

that (F, T, X, ir, X) is a weakly transitive fiber space with 7Ti(A) =0

and cat(A) ¿ 2. All homology groups considered are supposed to have

coefficients in a fixed principal ideal domain, which will not be explic-

itly displayed in the notation. Let i*: Hn(XXF)—>27„(AXF, x0XF)

be the epimorphism induced by inclusion.

Theorem 3.1. There exists an infinite exact sequence

-► Hn(F) L Hn(T) -+ Hn(X X F, x0 X F) ^ 27n_i(F) ->■••,

where f is induced by inclusion and g= — X*¿*\

Let 21(A) ®H(F) be graded in the usual way, and identify H(F)

with 2îo(A) ®H(F). H(X) ®H(F) is a natural subgroup of H(XXF);
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let X; = X*| H(X)®H(F). Clearly X;X; = 0 and X; lowers degree

by one unit, so we may consider the homology groups of H(X) ®H(F)

with this differential. The following corollary follows immediately

from Theorem 3.1.

Corollary 1. Suppose 27(A) and H(F) are both free. Then H(T)
~H(H(X) ®H(F)).

If X is the natural lifting function given by path multiplication for

the map p: EX—>A, then X* restricts to the map Xi: HP(X) ®Hq(ttX)

—>27j,+5_i(QA). According to Theorem 2.1, Hn(X) can be identified

with a direct summand of Hn(BlA) «2ïn_i(i2A) for »^2. Thus X^

can be considered as defining a multiplication between certain ele-

ments of 22*(&X).

Corollary 2.

(i) Xi is Pontryagin multiplication;

(ii) for »èl, the additive structure of 2ï*(£2X) is computable from

the induction formula

Hn(SlX) =        £       Hr(X) ® H,(QX) +       X      Hr(X) ® H¡(ÜX).
r+s-=n+l;s<n r+*=Ti;s<rt—1

Proof. Part (i) follows trivially from the definitions ; part (ii) fol-

lows from Theorem 3.1, since EX is contractible, on computing

Hn(QX) ^Hn+i(XXF, XoXF) by the Künneth formula and using the

relations

H0(X, xo) « 2?i(X, xo) « 0,        Hi(X) ~ Hi(X, x0)    for i à 1.

The formula above was originally shown by G. W. Whitehead to

hold if A is a suspension space [3].

Let ET(ir) denote the Leray-Serre spectral sequence of the fiber map

ir: T—>X. If the differentials dr are all trivial for r<k, El,q(ir) is

canonically isomorphic to E*s(7t). Denote by a: HP(X) ®Hq(F)

—>£*i5(7t) the canonical monomorphism of HP(X) ®HQ(F) into

22p,5(7r) followed by this isomorphism. Also let r: Hn(F)^>El¡n(ir) be

the canonical epimorphism.

Theorem 3.2.

(i) dT: ETm(ir)^>Erj,-T,q+r-i(ir) is zero if p^r;

(ii) there is a commutative diagram for p^2,

Hp(X) ® Hq(F)^Hp+q^(F)

[ff [t

v               dp p
Ep.q(ir)-* Eo,p+q-i(ir).



428 MICHAEL GINSBURG [June

Remark 1. The exact sequence of Theorem 3.1 exists even if

(F, T, X, ir, X) is not a weakly transitive fiber space, for Brown [2]

has shown that every fiber space is fiber homotopically equivalent to

a weakly transitive one. Applying Theorem 3.1 to this latter fiber

space provides the sequence. Similarly, part (i) of Theorem 3.2 is

valid for any fiber space.

Remark 2. If H(X) is free, Corollary 2 says that the Pontryagin

algebra iI*(ßX) is the tensor algebra of H(X) after shifting down by

one unit the degrees of elements of H(X). This also follows from a

theorem of Bott-Samelson [l ], since it is shown in [5] that if cat(X)

^2, the homology suspension is an epimorphism and thus all ele-

ments of H(X) are transgressive.

4. The general case. If AZ)B, let [A, B]p denote the p-îold car-

tesian power of the pair.

Theorem 4.1. Let (F, T, X, w, X) be a weakly transitive fiber space

with tti(X) =0 and cat(X) ^k. Then there exists a spectral sequence ET

such that

(i) Ê" is the graded group associated with H(T) under a suitable

filtration ;
(ii)  EPA = Hq([tiX, b]"XF), where b is the base point of OX;

(iii) dr = 0for r^k;

(iv) È;ti = 0 for p^k.

Let BA®C(F) (see §1) be filtered by the Dn= J%£ BiA®C(F).
The Dn are subcomplexes of the chain complex BA®C(F), and give

rise to the spectral sequence Er in the usual way. The proof of Theo-

rem 4.1 is now almost word for word a repetition of the proofs of

Theorems 2.1, 2.2, and 3.1 of [5]. As the proofs of these theorems are

long and are given in detail in [5], we will omit a repetition of these

arguments.

5. Proof of the theorems. Let (F, T, X, it, X) be a weakly transitive

fiber space such that tti(X)=0. Let A = C(QX), and let BA ®C(F)

denote the usual tensor product of chain complexes. C(F) will be

identified with the subcomplex BaA ®C(F). We will consider the fol-

lowing four chain complexes, nitrations, and spectral sequences:

1. BA®C(F) with the filtration Dn and spectral sequence Ër de-

fined in §1;

2. BA ®C(F) with the corresponding filtration

k=n

Dn=Y, BkA ® C(F)
k=0

and spectral sequence Er;
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3. BA®C(F)/C(F) with the filtration Rn=Dn/D0 and spectral
sequence Êr(R) ;

4. BA®C(F)/C(F) with the filtration Rn = Dn/D0 and spectral

sequence Er(R).

Note that Er and Er(R) are trivial spectral sequences.

The canonical projections ij:BA®C(F)^BA®C(F)/C(F) and

rj: BA ®C(F)—*BA ®C(F)/C(F) are filtration preserving chain maps

and induce maps ijr and r\T of the corresponding spectral sequences.

Lemma 5.1. For l^r^p, Vr: ErM~ETv,a(R) and r,r: ËrM~ËrM(R).

Proof. Consider the commutative diagram

i
Dp/Dp-r —> D¡p+r_i/Z)p_i

W     .      in"
j

RP/RP-r —* Rp+t-i/Rp-i

where the vertical maps are induced by rj and i and j are inclusions.

For p — r^O and p —1^0, that is for i^r^p, the vertical maps are

isomorphisms of chain complexes. In the induced homology diagram

i*
Hp+^Dp/Dp-.r)  —* Hp+^Dp+r^l/Dj^x)

iv* . iv*
J*

B¡>+q(Rp/Rp-r)  —* 3p+q(Rp+T-l/Rp-l)

since r¡* and r\* are isomorphisms, 77* maps the image of j* iso-

morphically onto the image of /*. But image i* = ETM, image j*

= Ep:Q(R), and iji'|£piS = ijr. The result for r¡ follows by putting tildes

over everything in sight.

Now consider the chain map jd: BA—>TÏA of Theorem 2.1. Let

i: C(F)—>C(F) be the identity map. Then the map of graded groups

j6 ® i: BA ® C(F) -^-BA® C(F)

induces a map of graded groups

*: BA ® C(F)/C(F)->BA ® C(F)/C(F).

Lemma 5.2. \p is a chain equivalence if cat(X) :£2.

Proof. If [ci, ■ • • , an]EBpA, we can write j6[ai, • • • , an]

= 2i [bj] for some b¡EA. Using this and the explicit form of the

boundary operators d in BA®C(F) and d in BA®C(F), an ele-

mentary calculation shows that

[d(j6 ®i)- (jd ® i)d] [ah ■ ■ ■ ,an]®c= -YIJ[]®bi-cE C(F).
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Hence d\p = \pd and \p is a chain map.

Since \f/ is clearly filtration preserving, it induces maps fa: Er(R)

—>Êr(R). Furthermore, since tti(A)=0, it is shown in [2] that there

are natural isomorphisms

X: BpA ® Hq(F) ~ A*,,    and    \: BPA ® Hq(F) « Ë\,q,

where in each case, 23^4 ®H(F) has the boundary operator d®\. A

routine calculation shows that the diagram

_ jd ® i*   _
BPA ® Hq(F)--> BPA ® Hq(F)

X| |X

F1 P1

t\\\, [ Vl
i                     Vl ~l

Ep.q(R)-> Ep,q(R)

is commutative. By Lemma 5.1,771 and iji are group isomorphisms for

pjäl, and so are isomorphisms of complexes for p>,2. Since /*ö* is

the identity isomorphism by Theorem 2.1, it follows that fa.: EPil(R)

~EPí<¡(R) for all p^2. Since E2M(R) ~EP,q(R) «0 for pgl, fa is an

isomorphism. By a standard argument, so is fa. As all the chain

complexes considered are free, \p is a chain equivalence.

Proof of Theorem 3.1. According to Theorem 1.1 we may replace

the exact homology sequence of (T, F) by that of (23^4 ®C(F), C(F)).

By Lemma 5.2, the relative group in this sequence is H(BA ®C(F),

C(F)), which, by the Kiinneth theorem, is H(XXF, xoXF). Hence

the sequence of Theorem 3.1 exists and/ is induced by inclusion.

Let flEHn(XXF) be represented by the cycle ß= ^2nbi®d of

BA ®C(F). Then B(b,)= £/ [¿</]+r<[ ] for some &,;G¿ and r¿GZ.

By definition, X*(/i) is represented by

\(Sd ® l)0i) = X(S ® 1) ["£» [bu] ® Ci + E¿ rt[ ]®d] = 23« *<#•«*

while gi*(ß) is represented by

#i(M) = dfj'ö ® 1)0») = O'« ® 1)¿G0 - Z.7 [ ] ® bird.

Since ¿(jit) =0, gi*(ß) = — X*(/l), and the theorem is proven.

Proof of Theorem 3.2. By Theorem 1.1, we may replace £r(ir)

by Êr. In proving Lemma 5.2 we have shown that fa: Er(R)—>Êr(R)

is an isomorphism for r^2; thus Ër(R) is a trivial spectral sequence.

By Lemma 5.1, ijr: Ev¡(¡-^>Ev¡q(R) is an isomorphism for p^r, which

implies dr: 2?^,—>2%_r,q+r~i is trivial for p>r. dr = 0 for p<r trivially,

so dr = 0 for r^p.
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Letting a generator ßEHp(X) ®Hq(F) be represented by b®c,

where b and c are cycles, we have, as in the proof of Theorem 3.1,

rX*(/x) represented by 23/¿Ve- On the other hand, j'0(o)= 23/ [bj] is
homologous to b since j*ö* is the identity isomorphism, according to

Theorem 2.1. Hence ß is also represented by 23/ [b,-] ®c. As

¿23/ [&/] ®c= — 23; [ ]®¿>/-cG2}0, cr(ju) is also represented by

23/ [bj] ®c, while dp<r(ß) has — 23/ [ ] ®b¡-c as representative. Thus

dpar= — rX*.
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