
THE PRIME NUMBER THEOREM FROM log »!

N. LEVINSON1

During the nineteenth century attempts were made to prove the

prime number theorem from the formula [l, pp. 87-95]
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While remarkable good results were obtained by Chebyshev and

Sylvester the prime number theorem was not obtained. That it can

be obtained will be shown below but only by using the fact that

f(l+ iu) 5¿0 and with the aid of Wiener's general Tauberian theorem.

Thus the use of log »! seems to be no simpler than using Lambert

series [2, Theorem 15] to prove the prime number theorem.

From (1) follows

« log n — n + O(log n) =  I      — \d\p(y),

where

Hence

*(*) = E log* = 23 -—nog p.
p"SX psx Llog pj

x log x — x + 0(log x) =  I      — \dip(y).

If

r(x) - H « + T

(2)

a; log x — ä + 0(log x) =  I   ri — )#(y) + ^ I
#(y)

■/X^+'iT

■*(*)
¿y + y^(x).

Let
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/'x ^{y)        1jyidy + -*(*).
i    V2 2

My),   ,  i

Then by (2)

(4) g(x) = x log x — x — I    r (—J #(j) + 0(log x).

Let

/xip(y) -^fdy.

Then by (3)

2

Using this with (5) in (3)

^x2H(x)) = g(x),

- x2H(x) =  f   g(y)dy.
2 J i

$(x) - 2g(x) - 4       -.
J i       x

Using (4) this becomes

ip(x) = 2x log x - 2x - 2 I    ri - W(;y) + 0(log x)

-iji^iogx-ix2-/^/;^)^)}

or

+ 0(log x).

But

/*        rx /y\ c cx,vdHi) j      ' IT J dy = j j   #(y)y J f (l)^-

Hence (6) becomes
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(7) J " jl -f- 2r(-) - 4 ̂  J * 'r«)«} #(y) = » + O(log x).

Let

(8) 2*(«) = 1 + 2r(x) - 4 j* r(Qdi/x.

Then since r is periodic and has average zero, R(x) is bounded. It is

easy to show R(x) =0. From (7) and (8)

f R (—\<fy(y) = x + 0(log as).

From this follows

/' dx (*x   / x \
— J    R(-\dfay)=t + 0(\og2t)

/> t f* '   / x\ dx
dfay)       R[-)- = l + 0(log2t).

1 Jy    \y/ x

or

Hence

Í  dfay) C
J1 J1 £

Replacing t by x and integrating by parts

fa[y)    / x "
(9) f * ÍV1 RÍ—)dy = x + 0(log2 x).

J1       y        \ y /

That m(y)=\p(y)/y is bounded follows in an elementary way from

Chebyshev's inequality for 9(x)/x where

9(x) = 53 log p.
PSX

If x = e' and y = e' then (9) becomes

(10) f R(et-')e-<-'-^m(et)dt = 1 + 0(i2éT«)-
J 0

If 2£(s)=0 for s<0 and

(11) K(s) = 2?(e«)e-%       s > 0

then since R is bounded,
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/OO

| K(s) | ds < oo
-»

and by (10)

|   K(s - t)m(el)dt = 1 + 0(i2<rs).
J o

If

/>   00

X(í)e-iu»¿j = £(«) 5¿ O

o

and if k(0) — 1 it follows from Wiener's general Tauberian theorem

[2, Theorem 4] that for any Ki(s)EL(— oo, oo)

/I   00 /■*   OCXi(i - t)m(e')dt = j    Xi(í)dí.
o "^ o

In particular let

Ki(s) = e-;        s > 0,

= 0, j < 0.

Then

lim   f
»-+00      */    Q

e-<-'-t)m(et)dt = 1,

or

I-.CO      X    J  1 Y

It is an immediate consequence of this that, for any X>0,

J        Ç  x(l+\)    ̂ (y)

lim — I — dy = 1,
J—* oo XxJx y

and this leads easily to limI<00 \p(x)/x= 1. Thus to complete the proof

of the prime number theorem it remains to show that k(u) 5¿0, k(0) = 1.

In terms of R using (11)

k(u) =  f   R(x)x~iu-2dx.
J i

Hence by (8)
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/»CO /»   CO

k(u) =  I    x~iu~2dx + 2 I    r(íc)a;-<u-2áa;

- 4 I    ar<u-3¿a; I    r(/)¿¿

=- + 2 f   r(*)*-iü-2¿x(l- )
1 + iu        J \ \        2 -f- iuj

1 2iu     C
=-7- H-— I    r(x):»r<u-2í2x.

1 + iu      2 + ÍM J i

Setting m = 0, it follows that fc(0) = 1. Recalling the periodicity of r(x)

/»  CO 00 /•   1r(x)ar<u-2¿a; = 23 I    (£-*)(» + *)~<u_2d*
1 n=l J 0

00 /»   1

= lim 23 I   (i - *)(» + *)-<u-2-x<2*.
X—»0    -_i «/ n

00 /»  1

*->0     n-1«' 0

Clearly

f  (|-x)(« + a:)-iu-2-x^
•J o

11/1 1     '\

2  »m + 1 + X \(n + 1)1WH"      «i+^+í»/

_1_/        1_1_\

(¿M + 1 + X)(*'*i + X) \(m +  l)X+<" Mx+i« /

Hence

23 f  (* - *)(» + x)-~-2-Hx = . {f(1 + X + iu) - i}
1   •/ o ÍM + 1 + X

(*M + 1 + k)(ÍU + k)

Thus

1 2iu . ,
*(«) = —— + ,„  ,   . w.    ,   ^ {f(1 + »«) - *}

1 + t'w      (2 + »«)(»'« +1) (2 + »'«)(»'« + 1)

2iu

(2 + t«)(l + iu)

Hence k(u)^0.

— f(l + »'«).
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Addendum (March 8, 1963). It was pointed out to me by H. R. Pitt

that a different proof of the prime number theorem based on log n\

and using Wiener's theorem was given by A. E. Ingham, Some Tau-

berian theorems connected with the prime number theorem, J. London

Math. Soc. 22 (1945), 161-180.
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FLAG-TRANSITIVE PLANES OF EVEN ORDER1

R. ROTH

1. Introduction. In a projective plane a configuration consisting of

a line and a point incident with that line is called a flag. A collinea-

tion group which is transitive on the flags of a projective plane is

called flag-transitive (or "acutely transitive"). Such a group is also

called sharply flag-transitive (or "flag-regular" or "acutely regular") if

in addition, the only collineation leaving a flag fixed is the identity.

A projective plane is called flag-transitive or sharply flag-transitive,

respectively, if it admits a group of collineations which is flag-transi-

tive or sharply flag-transitive, respectively. D. G. Higman and J. E.

McLaughlin proved the following theorem [6, Proposition 10,

p. 391].

Theorem. Given a finite projective plane of odd order n with a flag-

transitive group G where n is not a square or else n — m2 and m=—\

(mod 4). Then the plane is Desarguesian and the group G is doubly

transitive.

In this paper, this theorem is extended to finite projective planes of

many orders n. It is shown (Theorem 1) that for any integer n such

that either « + 1 or «2-f-M+l is a prime, a flag-transitive plane of

order n must be Desarguesian or sharply flag-transitive. However, as
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