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1. The square integrable harmonic differentials on a Riemann sur-

face IF form a Hubert space Ta. Let T* be a closed subspace of Tn- Let

c be a 1-chain on IF. There exists a unique element ip(c) E?x with the

property /cw=(co, \p(c)) for all oETx. We refer to ip(c) as the Tx-

reproducing differential for c. Accola [l] has shown that if c is a

cycle, then the extremal length of the homology class of c is equal to

the square of the norm of the T^-reproducing differential for c (cf.

also [3]). Two specific problems raised by Accola 's result are the

following. For the important subspaces Tx, does the norm of the Tx-

reproducing differential for a cycle have an extremal length inter-

pretation? Secondly, we may ask for a family of curves associated

with a 1-chain c, not necessarily a cycle, whose extremal length gives

the norm of the T^-reproducer for c. (By Abel's theorem, the vanish-

ing of the norm of this reproducer implies that dc is a principal

divisor.)

In the present paper we give an answer to the first question for the

subspace T^e. Theorem 1 states that an associated geometric con-

figuration is the weak homology class of c.2

2. Let rx be a closed subspace of Th such that Tx = Is». We say that

two cycles Cx and c2 are rx-homologous, denoted by Cx~c2 (mod Tx),

il /Cl_C2w = 0 for all coETx. Denote the r^-homology class of a cycle c
by cx.

An invariant expression p(z)|¿z| with p a nonnegative and lower

semicontinuous function is called a linear density. The p-area is

Aip)= ) j   p2dxdy.

The p-length of a family Œ of arcs is
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* Another special case of the first question has been settled by A. Marden. He has

shown that a geometric configuration for the subspace Tho (notation as in [2]) is the

set of relative, i.e., possibly infinite cycles which are weakly homologous to c [An

extremal length problem and the bilinear relation on open Riemann surfaces, doctoral

dissertation, Harvard University, May, 1962].
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L($, p) = inf<   \cp\dz\:cE5

The extremal length of ï is

X(í) =sup/(i,p)2/^(p).
p

Lemma 1. Let cbe a cycle on W. Let X(cx) be the extremal length of all

cycles Yx-homologous to c. Let \p be the Yx-reproducing differential for c.

Then\(c*)^\\\p\\2.

Proof. Let po|¿z| be the linear density |^+iu^*|. Then A(p0)

= U\\2. For 8Ecx we have fp0\dz\ ^\M\ =\M\ = |MK _and the
desired inequality follows. We have used the fact that Yx = Tx which

implies that \p is real.

3. We shall prove a converse of Lemma 1 for ra, = r»,e. First note

that Ci«c2 (mod Yhse) if and only if Ci — c2 is weakly homologous to

zero. In fact, Ci«c2 (mod Yhse) holds exactly when c\ — c2 is a dividing

cycle (see Theorem V.20D of [2]), which in turn is equivalent to

being weakly homologous to zero (see Theorem I.32C, ibid.).

Let ß be the interior of a compact bordered Riemann surface Ö.

Let c be a cycle in ß and \pa the rÄse-reproducer for c. Let Li be the

normal operator for the canonical partition of dß (cf. [2]). Corollary 6

of [4] shows that \pa=(2ir)~1dp* where p is a harmonic function on

W—c and satisfies p = L\p in a boundary neighborhood of ß. Thus p

is constant on each contour ß, of Ö and fßfip* = 0. If S is a cycle on ß

then (2w)~1f¡dp is an integer equal to the intersection number SXc.

Furthermore, the rASe-reproducer for an open surface W is the limit

of xpa for exhausting canonical subregions ß—>TF.

In the course of the following proofs we find occasion to use argu-

ments similar to those expressed or implied in Accola [l]. For con-

venience to the reader we repeat his reasoning in such situations.

Lemma 2. Let cbe a cycle on a compact bordered Riemann surface and

\p the Yhse-reproducing differential for c. Then \(ch") = ||i/'||2.

Proof. Denote the bordered surface by Ü and its interior by ß.

Let the contours be p\, • • • , ß„. Let X) be the equivalence class of p\

in the sense of Accola [l ]. That is, V is the set of points in Ü which can

be joined to a point of ft by an arc ô for which f¿p* is an integer. TJ is a

closed set which is locally a level curve of a harmonic function. Let

ß — V = Ri\J • • ■ VJi?m be a decomposition into components. Each

Ry is a finite surface. The points of V serve as a piecewise analytic

}■
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border for Rr if we allow multiplicities for the prime ends. Rv to-

gether with its boundary shall be denoted by R*. We may omit the

details of this construction but remark that there is an analytic map-

ping i?„*—>0 which restricts to the identity on Rv. By means of this

mapping we refer to points of dR* as belonging to V or 30.

0* is exact on Ry, say \p* = dpy, and we know that p, extends har-

monically to R*. Since each point of dR* belongs to V or du we see

that p, is constant on each component of dR*. We adjust p, so that

the smallest such constant on V is zero. Now let p„ be the collection of

those boundary components of R* on which pv = 0, a, those on which

pv=l, and let t„ contain the remaining ones. We orient them so that

dR*=pv+a,+Tv. The points of p, and o-„ belong to V, those of r„ be-

long to dû —"U. Let us show that if t, contains a point / of some ßk

then it must contain all of ßk- For txEßx, f't^* is not an integer and

since 0* = O along ßk, it follows that ßk has a connected neighborhood

disjoint from V. This neighborhood must be in Rv, hence ßkEr*.

By means of the mapping R*—>0, we consider a, as a 1-chain on

Ü and claim that c«2„o-„ (mod Thse)- Let wEThse and assume that «

extends harmonically to Ü. Then /cco = (w, \p) = 2„(w, dp*). By partial

integration we have (a>, dp*) =ffRydp,Aoo = f<,„<*)+JrypyU. We have seen

that Tv is a union of contours ßrv - - ■ , ßn on each of which £„ is a

constant. Since co is semiexact we obtain Jd^ = fsr^- It follows that

c — 2„o-„ is a dividing cycle.

The function p, in i?„ has boundary values 0 on p„, 1 on a, and con-

stants kv¡í on /3yil, those contours of Ö which make up t„. These con-

stants must satisfy 0 < kr/l < 1 in order for the flux condition fßVpdp* = 0

to hold. Consequently, for sG(0, 1) the level curvesavis) =PH1is) are

compact and weakly homologous to a„ except for the finite number of

values s = ky„. Let ffis) =2„<r„(s). Let p be a linear density on fi. Then

for almost all sEiO, 1)

L2ip, c">°) Ú ( f   pA   £ f   P2t f   <l>= \\42 f    PV.

Integrating over sG(0, l)we obtain

72(p, c»«) = ||*||M(p).

This, together with the opposite inequality of Lemma 1, completes

the proof.

4. Theorem. Let W be an open Riemann surface. Let xp be the

Th,e-reproducing differential for a cycle c on W. Then \\\¡/\\2 gives the ex-

tremal length of all cycles weakly homologous to c.
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Proof. Let ß be a canonical subregion of W and ^q the r*ie(ß)-

reproducing differential for c. Thanks to the above lemmas we have

He") è |k|f = Hm ya\\l = lim \a(ch") > X(ch").
a->w a->w
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