EXTREMAL LENGTH OF WEAK HOMOLOGY CLASSES ON RIEMANN SURFACES¹

BURTON RODIN

1. The square integrable harmonic differentials on a Riemann surface W form a Hilbert space Γ_h . Let Γ_x be a closed subspace of Γ_h . Let c be a 1-chain on w. There exists a unique element $\psi(c) \in \Gamma_x$ with the property $\int_c \omega = (\omega, \psi(c))$ for all $\omega \in \Gamma_x$. We refer to $\psi(c)$ as the Γ_x -reproducing differential for c. Accola [1] has shown that if c is a cycle, then the extremal length of the homology class of c is equal to the square of the norm of the Γ_h -reproducing differential for c (cf. also [3]). Two specific problems raised by Accola's result are the following. For the important subspaces Γ_x , does the norm of the Γ_x -reproducing differential for a cycle have an extremal length interpretation? Secondly, we may ask for a family of curves associated with a 1-chain c, not necessarily a cycle, whose extremal length gives the norm of the Γ_h -reproducer for c. (By Abel's theorem, the vanishing of the norm of this reproducer implies that ∂c is a principal divisor.)

In the present paper we give an answer to the first question for the subspace Γ_{hse} . Theorem 1 states that an associated geometric configuration is the weak homology class of c.²

2. Let Γ_x be a closed subspace of Γ_h such that $\Gamma_x = \overline{\Gamma}_x$. We say that two cycles c_1 and c_2 are Γ_x -homologous, denoted by $c_1 \approx c_2 \pmod{\Gamma_x}$, if $\int_{c_1-c_2} \omega = 0$ for all $\omega \in \Gamma_x$. Denote the Γ_x -homology class of a cycle c by c^x .

An invariant expression $\rho(z)|dz|$ with ρ a nonnegative and lower semicontinuous function is called a linear density. The ρ -area is

$$A(\rho) = \int \int_{W} \rho^2 dx dy.$$

The ρ -length of a family \mathfrak{F} of arcs is

Received by the editors February 27, 1963.

¹ This research was supported by the Air Force Office of Scientific Research.

² Another special case of the first question has been settled by A. Marden. He has shown that a geometric configuration for the subspace Γ_{h0} (notation as in [2]) is the set of relative, i.e., possibly infinite cycles which are weakly homologous to c [An extremal length problem and the bilinear relation on open Riemann surfaces, doctoral dissertation, Harvard University, May, 1962].

$$L(\mathfrak{F}, \rho) = \inf \left\{ \int_{c} \rho |dz| : c \in \mathfrak{F} \right\}$$

The extremal length of F is

$$\lambda(\mathfrak{F}) = \sup_{\rho} L(\mathfrak{F}, \rho)^2 / A(\rho).$$

LEMMA 1. Let c be a cycle on W. Let $\lambda(c^z)$ be the extremal length of all cycles Γ_x -homologous to c. Let ψ be the Γ_x -reproducing differential for c. Then $\lambda(c^z) \ge ||\psi||^2$.

PROOF. Let $\rho_0|dz|$ be the linear density $|\psi+i\psi^*|$. Then $A(\rho_0)=||\psi||^2$. For $\delta \in c^x$ we have $\int_{\delta}\rho_0|dz| \geq |\int_{\delta}\psi|=|\int_{c}\psi|=||\psi||^2$, and the desired inequality follows. We have used the fact that $\Gamma_x=\bar{\Gamma}_x$ which implies that ψ is real.

3. We shall prove a converse of Lemma 1 for $\Gamma_x = \Gamma_{hse}$. First note that $c_1 \approx c_2 \pmod{\Gamma_{hse}}$ if and only if $c_1 - c_2$ is weakly homologous to zero. In fact, $c_1 \approx c_2 \pmod{\Gamma_{hse}}$ holds exactly when $c_1 - c_2$ is a dividing cycle (see Theorem V.20D of [2]), which in turn is equivalent to being weakly homologous to zero (see Theorem I.32C, ibid.).

Let Ω be the interior of a compact bordered Riemann surface $\overline{\Omega}$. Let c be a cycle in Ω and ψ_{Ω} the Γ_{hse} -reproducer for c. Let L_1 be the normal operator for the canonical partition of $\partial\Omega$ (cf. [2]). Corollary 6 of [4] shows that $\psi_{\Omega} = (2\pi)^{-1}dp^*$ where p is a harmonic function on W-c and satisfies $p = L_1p$ in a boundary neighborhood of Ω . Thus p is constant on each contour β_i of $\overline{\Omega}$ and $\int_{\beta_i} dp^* = 0$. If δ is a cycle on Ω then $(2\pi)^{-1}\int_{\delta} dp$ is an integer equal to the intersection number $\delta \times c$. Furthermore, the Γ_{hse} -reproducer for an open surface W is the limit of ψ_{Ω} for exhausting canonical subregions $\Omega \rightarrow W$.

In the course of the following proofs we find occasion to use arguments similar to those expressed or implied in Accola [1]. For convenience to the reader we repeat his reasoning in such situations.

LEMMA 2. Let c be a cycle on a compact bordered Riemann surface and ψ the Γ_{hse} -reproducing differential for c. Then $\lambda(c^{hse}) = ||\psi||^2$.

PROOF. Denote the bordered surface by $\overline{\Omega}$ and its interior by Ω . Let the contours be β_1, \dots, β_n . Let $\mathbb U$ be the equivalence class of β_1 in the sense of Accola [1]. That is, $\mathbb U$ is the set of points in $\overline{\Omega}$ which can be joined to a point of β_1 by an arc δ for which $\int_{\delta} \psi^*$ is an integer. $\mathbb U$ is a closed set which is locally a level curve of a harmonic function. Let $\Omega - \mathbb U = R_1 \cup \cdots \cup R_m$ be a decomposition into components. Each R_r is a finite surface. The points of $\mathbb U$ serve as a piecewise analytic

border for R_{ν} if we allow multiplicities for the prime ends. R_{ν} together with its boundary shall be denoted by R_{ν}^{*} . We may omit the details of this construction but remark that there is an analytic mapping $R_{\nu}^{*} \to \bar{\Omega}$ which restricts to the identity on R_{ν} . By means of this mapping we refer to points of ∂R_{ν}^{*} as belonging to \mathcal{V} or $\partial \bar{\Omega}$.

 ψ^* is exact on R_r , say $\psi^* = dp_r$, and we know that p_r extends harmonically to R_r^* . Since each point of ∂R_r^* belongs to $\mathbb V$ or $\partial \bar{\Omega}$ we see that p_r is constant on each component of ∂R_r^* . We adjust p_r so that the smallest such constant on $\mathbb V$ is zero. Now let p_r be the collection of those boundary components of R_r^* on which $p_r = 0$, σ_r those on which $p_r = 1$, and let τ_r contain the remaining ones. We orient them so that $\partial R_r^* = \rho_r + \sigma_r + \tau_r$. The points of ρ_r and σ_r belong to $\mathbb V$, those of τ_r belong to $\partial \bar{\Omega} - \mathbb V$. Let us show that if τ_r contains a point t of some β_k then it must contain all of β_k . For $t_1 \subseteq \beta_1$, $\int_{t_1}^t \psi^*$ is not an integer and since $\psi^* = 0$ along β_k , it follows that β_k has a connected neighborhood disjoint from $\mathbb V$. This neighborhood must be in R_r , hence $\beta_k \subset \tau_r$.

By means of the mapping $R_{\nu}^* \to \bar{\Omega}$, we consider σ_{ν} as a 1-chain on $\bar{\Omega}$ and claim that $c \approx \Sigma_{\nu} \sigma_{\nu}$ (mod Γ_{hse}). Let $\omega \in \Gamma_{hse}$ and assume that ω extends harmonically to $\bar{\Omega}$. Then $\int_{c} \omega = (\omega, \psi) = \Sigma_{\nu}(\omega, dp_{\nu}^*)$. By partial integration we have $(\omega, dp_{\nu}^*) = \int \int_{R_{\nu}} dp_{\nu} \wedge \omega = \int_{\sigma_{\nu}} \omega + \int_{\tau_{\nu}} p_{\nu} \omega$. We have seen that τ_{ν} is a union of contours $\beta_{\nu_1}, \cdots, \beta_{\nu_k}$ on each of which p_{ν} is a constant. Since ω is semiexact we obtain $\int_{c} \omega = \int_{\Sigma_{\nu} \sigma_{\nu}} \omega$. It follows that $c - \Sigma_{\nu} \sigma_{\nu}$ is a dividing cycle.

The function p_{ν} in R_{ν} has boundary values 0 on ρ_{ν} , 1 on σ_{ν} and constants $k_{\nu\mu}$ on $\beta_{\nu\mu}$, those contours of $\bar{\Omega}$ which make up τ_{ν} . These constants must satisfy $0 < k_{\nu\mu} < 1$ in order for the flux condition $\int_{\beta\nu_{\mu}} dp_{\nu}^* = 0$ to hold. Consequently, for $s \in (0, 1)$ the level curves $\sigma_{\nu}(s) = p_{\nu}^{-1}(s)$ are compact and weakly homologous to σ_{ν} , except for the finite number of values $s = k_{\nu\mu}$. Let $\sigma(s) = \sum_{\nu} \sigma_{\nu}(s)$. Let ρ be a linear density on Ω . Then for almost all $s \in (0, 1)$

$$L^2(\rho, c^{hse}) \leq \left(\int_{\sigma(s)} \rho \psi\right)^2 \leq \int_{\sigma(s)} \rho^2 \psi \int_{\sigma(s)} \psi = \|\psi\|^2 \int_{\sigma(s)} \rho^2 \psi.$$

Integrating over $s \in (0, 1)$ we obtain

$$L^{2}(\rho, c^{hse}) \leq ||\psi||^{2} A(\rho).$$

This, together with the opposite inequality of Lemma 1, completes the proof.

4. THEOREM. Let W be an open Riemann surface. Let ψ be the Γ_{h*e} -reproducing differential for a cycle c on W. Then $||\psi||^2$ gives the extremal length of all cycles weakly homologous to c.

PROOF. Let Ω be a canonical subregion of W and ψ_{Ω} the $\Gamma_{hee}(\Omega)$ -reproducing differential for c. Thanks to the above lemmas we have

$$\lambda(c^{hse}) \geq \|\psi\|^2 = \lim_{\Omega \to W} \|\psi_{\Omega}\|_{\Omega}^2 = \lim_{\Omega \to W} \lambda_{\Omega}(c^{hse}) \geq \lambda(c^{hse}).$$

BIBLIOGRAPHY

- 1. R. D. M. Accola, Differentials and extremal length on Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 540-543.
- 2. L. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1960.
- 3. C. Blatter, Une inégalité de géométrie différentielle, C. R. Acad. Sci. Paris 250 (1960), 1167.
- 4. B. Rodin, Reproducing kernels and principal functions, Proc. Amer. Math. Soc. 13 (1962), 982-992.

HARVARD UNIVERSITY