EXTREME HAMILTONIAN CIRCUITS. RESOLUTION OF THE CONVEX-ODD CASE

FRED SUPNICK AND LOUIS V. QUINTAS

Let n points in the Euclidean plane fall on the boundary B of their convex hull. It is well known that a shortest polygon passing through these points coincides with B. But, it is not known how to explicitly indicate a longest polygon having these n points as vertices. In this paper we do this for the case where n is odd.

THEOREM. Let

(1)
$$P_1, P_3, P_5, \cdots, P_{2\nu-1}, P_2, P_4, \cdots, P_{2\nu-2}$$

be points in the plane which fall on the boundary B of their convex hull in the stated (linear or cyclic) order (accordingly as the points (1) are or are not collinear). Then $[P_1P_2 \cdot \cdot \cdot P_{2p-1}]^2$ is a longest polygon with (1) as vertices; if no three points of (1) are collinear, it is the only one.

PROOF. Case I. Suppose no three points of (1) are collinear. An edge of a polygon intersected by all noncontiguous edges must have the vertices of the polygon alternatively on either side, and is thus an edge of $[P_1P_2 \cdots P_{2p-1}]$. This implies that $[P_1P_2 \cdots P_{2p-1}]$ is the only polygon with each closed edge intersecting every other closed edge.

The symbol $[V_1 \cdots V_{i-1}(V_i \cdots V_j) V_{j+1} \cdots V_n]$ will denote the polygon $[V_1 \cdots V_{i-1} V_j V_{j-1} \cdots V_i V_{j+1} \cdots V_n]$; the operation $[\cdots (\cdots) \cdots]$ will be referred to as an arcinversion (cf. [1, p. 180]). Let $h = [R_1 \cdots R_{2p-1}]$ denote any polygon having (1) as vertices and which is distinct from $[P_1 \cdots P_{2p-1}]$. We show that there is an arcinversion which yields a longer polygon. Let i denote the smallest integer such that the closed edge $R_i R_{i+1}$ of k does not intersect at least one of the closed edges $R_1 R_2$, $R_2 R_3$, \cdots , $R_{i-1} R_i$ of k; i of course satisfies (2 < i < 2p-1). Then, the vertices R_{i-1} and R_i define the following partition of $B: B_1 \cup B_2 \cup \{R_{i-1}, R_i\}$, where B_1 is the component of $B - \{R_{i-1}, R_i\}$ which contains R_1 .

Case A. R_{i-2} and R_{i+1} in the same component of $B - \{R_{i-1}, R_i\}$.

Presented to the Society, February 23, 1963; received by the editors February 11, 1963.

¹ Added in proof. The remaining case, where n is even, has recently been resolved by the authors (Abstract 611-60, Notices Amer. Math. Soc. 11 (1964), 335).

² The symbols for polygons are to be considered cyclic and symmetric.

- (i) Suppose i is odd. Then R_{i+1} is in B_1 and the closed edge R_iR_{i+1} does not intersect the closed edge R_1R_2 . For, if $R_iR_{i+1} \cap R_1R_2 \neq \emptyset$ (\emptyset denotes the empty set), then the closed edge R_iR_{i+1} would intersect each of the closed edges R_1R_2 , R_2R_3 , \cdots , $R_{i-1}R_i$. The arcinversion $[R_1(R_2 \cdots R_i)R_{i+1} \cdots R_{2p-1}]$ yields a polygon which is longer than h.
- (ii) Suppose i is even. Then R_{i+1} is in B_2 and the closed edge R_iR_{i+1} does not intersect the closed edge R_2R_3 . Thus, the arcinversion $[R_1R_2(R_3 \cdots R_i)R_{i+1} \cdots R_{2p-1}]$ yields a polygon which is longer than h.

Case B. R_{i-2} and R_{i+1} in different components of $B - \{R_{i-1}, R_i\}$. Let C_1 denote the component B_1 or B_2 which contains at most p-2 vertices, and C_2 the component which has at least p-1 vertices. Let the vertices of h be renumbered consecutively as follows: $h = [S_1S_2 \cdot \cdot \cdot S_{2p-1}]$ with $R_{i-1}R_i = S_1S_2$ or S_2S_1 so that S_3 is in C_1 .

Let k denote the number of vertices in C_1 . We first show that there is at least one edge of k which has both vertices in C_2 . There are at most 2k edges incident to the vertices in $C_1 \cup \{S_1, S_2\}$ which terminate at vertices in C_2 . There are (2p-1)-(k+2) vertices in C_2 . Thus, there are at least the following number of edges of k which have both vertices in C_2

$$N = \frac{2((2p-1)-(k+2))-2k}{2} = 2p-2k-3.$$

Since $k \le p-2$, we have $N \ge 2p-2(p-2)-3=1$.

Let S_iS_{i+1} denote an edge of h which has both vertices in C_2 . Then, either $S_1S_i \cap S_2S_{i+1} \neq \emptyset$ or $S_2S_i \cap S_3S_{i+1} \neq \emptyset$. In the former case the arcinversion $[S_1(S_2 \cdot \cdot \cdot S_i)S_{i+1} \cdot \cdot \cdot S_{2p-1}]$ yields a polygon which is longer than h, and in the latter case the arcinversion

$$[S_1S_2(S_3\cdots S_i)S_{i+1}\cdots S_{2p+1}]$$

yields a polygon which is longer than h.

REMARK. We note that points (1) satisfying Case I have the property that the longest (also, shortest) polygon can be obtained from any other polygon by a sequence of arcinversions each of which strictly increases (decreases) the length of the polygon to which it is applied (cf. [1, Remark III, p. 181]).

Case II. Suppose B has support lines passing through at least three points of (1). If the points of (1) are not all collinear, let P be a point in the interior of the convex hull of (1) and B(t) ($0 \le t < 1$) a family of strongly convex curves circumscribing B and converging to B as t approaches 1. If the points of (1) are all collinear, let P be a point in

one of the open half-planes defined by the line on which the points (1) lie and B(t) $(0 \le t < 1)$ a family of strongly convex arcs having P_1 and P_{2p-2} as endpoints, converging to B as t approaches 1, and lying in the closed half-plane which does not contain P. Let $P_i(t)$ be the intersection of B(t) with the ray emanating from P and passing through P_i $(1 \le i \le 2p-1)$. Then, for each t $(0 \le t < 1)$, Case I implies $[P_1(t) \cdots P_{2p-1}(t)]$ is longer than any other polygon $[P_{i_1}(t) \cdots P_{i_{2p-1}}(t)]$. Thus, $[P_1 \cdots P_{2p-1}]$ is a polygon of maximum length.

REMARK. We note that in Case II $[P_1 \cdots P_{2p-1}]$ is not necessarily the only longest polygon. For example, in a set (1) for which P_1 , P_3 , P_5 , \cdots , P_{2p-1} , P_2 , P_4 are collinear the polygons $[P_1 \cdots P_{2p-1}]$ and $[P_1(P_2P_3P_4)P_5 \cdots P_{2p-1}]$ have the same length.

REFERENCE

1. F. Supnick, Extreme Hamiltonian lines, Ann. of Math. (2) 66 (1957), 179-201.

CITY COLLEGE, NEW YORK AND St. JOHN'S UNIVERSITY, JAMAICA, NEW YORK