A RELATIVE COHOMOLOGY FOR ASSOCIATIVE ALGEBRAS

U. SHUKLA

Introduction. In this paper we propose a relative cohomology for associative algebras over a *commutative ring*. A relative cohomology for associative algebras over a *field* has been given by Hochschild [2]. In [3] the author has given a cohomology for associative algebras over a commutative ring which is a generalisation of Hochschild's cohomology for associative algebras over a field, a description of which can be found in [1]. In order to be able to show that the relative cohomology proposed here is in the same way a true generalisation of Hochschild's relative cohomology, we require a theorem analogous to [3, Theorem 1]. We are unable to prove such a theorem.

I am grateful to the referee for his useful suggestions.

1. The tensor product and Hom of graded modules over graded rings. Let $R = \sum_{p \geq 0} R^p$ be a graded ring, $A = \sum_{p \geq 0} A^p$ be a graded right R-module and $B = \sum_{p \geq 0} B^p$ be a graded left R-module. Let F be a graded free abelian group generated by the pairs (a, b), where $a \in A^p$, $b \in B^q$ $(p \geq 0, q \geq 0)$, the pair (a, b) being a homogeneous element of degree p+q. Let G be the graded subgroup generated by the homogeneous elements of the form (a+a', b)-(a, b)-(a', b), (a, b+b')-(a, b)-(a, b'), and $(a\lambda, b)-(-1)^r(a, \lambda b)$, where $a, a' \in A^p$; $b, b' \in B^q$; $\lambda \in R^r$ $(p \geq 0, q \geq 0, r \geq 0)$. The factor group F/G is a graded abelian group which we call the tensor product of the graded right R-module A and the graded left R-module B over the graded ring R and denote it by $A \otimes_R B$. We denote the image of the element (a, b) of F in $A \otimes_R B$ by $a \otimes b$. Then $(a+a') \otimes b = a \otimes b + a' \otimes b$, $a \otimes (b+b') = a \otimes b + a \otimes b'$, and $a\lambda \otimes b = (-1)^r a \otimes \lambda b$.

Suppose now that both A and B are graded left R-modules. We say that $f: A \rightarrow B$ is a graded-R-linear map if f(a+a') = f(a) + f(a'), and $f(\lambda a) = (-1)^r \lambda f(a)$, where $a, a' \in A$ and λ is a homogeneous element of R of degree r. The set of all such graded-R-linear maps is an abelian group which we denote by $\operatorname{Hom}_R(A, B)$. When A and B are both right R-modules, we define $\operatorname{Hom}_R(A, B)$ in an analogous fashion.

The tensor product and Hom defined here are different from the usual tensor product and Hom of graded modules over a graded ring inasmuch as the grading of the base ring R is also taken into account. We shall have occasion to use the usual Hom also in the sequel.

2. The complex $\mathfrak{B}(U, V)$. By a set-couple [resp. module-couple, algebra-couple] (P, Q) we mean that P is a set [resp. module, algebra] and Q is a subset [resp. submodule, subalgebra] of P. By a map [resp. homomorphism] $f: (P, Q) \rightarrow (P', Q')$ of set-couples [resp. module-couples, algebra-couples] we understand a map [resp. homomorphism] $f: P \rightarrow P'$ such that $f(Q) \subset Q'$.

Let K be a commutative ring with identity $1 \neq 0$. By an algebra we shall mean an associative algebra over K and except when mention is made to the contrary an associative algebra will be understood to possess an identity. A homomorphism of algebras will be understood to map the identity (if there exists one) into the identity.

- Let (Λ, Γ) be an algebra-couple. We construct (cf. [3, p. 172]) a differential graded algebra-couple (U, V), where $U = \sum_{n\geq 0} U_n$, $V = \sum_{n\geq 0} V_n$, together with a homomorphism of differential graded algebra-couples $\epsilon: (U, V) \rightarrow (\Lambda, \Gamma)$, the differential and grading in (Λ, Γ) being trivial, having the following properties:
- (i) For every $n \ge 0$, $U_n = K(X_n)$ [resp. $V_n = K(Y_n)$], the K-free module having the set X_n [resp. Y_n] as base.
- (ii) An associative multiplication is defined in U [resp. V] by K-linear extension of the maps of set-couples

$$(X_i \times X_j, Y_i \times Y_j) \rightarrow (X_{i+j}, Y_{i+j})$$

for which $(x_i \cdot x_j) \cdot x_k = x_i \cdot (x_j \cdot x_k)$; $x_i \in X_i$, $x_j \in X_j$, $x_k \in X_k$, where $x_i \cdot x_j$ denotes the image of (x_i, x_j) in X_{i+j} . In particular, (U_0, V_0) is an associative algebra-couple.

- (iii) The restriction of the homomorphism $\epsilon: (U_0, V_0) \rightarrow (\Lambda, \Gamma)$ to (X_0, Y_0) is a bijective map which preserves multiplication.
- (iv) For each $n \ge 1$, there is a homomorphism of K-module-couples $d_n: (U_n, V_n) \to (U_{n-1}, V_{n-1})$ such that for n = 1, the restriction of d_1 to (X_1, Y_1) is a bijective map of (X_1, Y_1) onto the kernel-couple (N_0, L_0) of ϵ and that for $n \ge 2$, the restriction of d_n to (X_n, Y_n) is a bijective map of (X_n, Y_n) onto the kernel-couple (N_{n-1}, L_{n-1}) of d_{n-1} . We define $d_0 = 0$.
- (v) We have $d_{i+j}(x_i \cdot x_j) = (d_i x_i) \cdot x_j + (-1)^i x_i \cdot (d_j x_j)$; $x_i \in X_i$, $x_j \in X_j$ $(i \ge 0, j \ge 0)$, which by K-linearity gives an analogous relation when $x_i \in U_i$, $x_j \in U_j$ $(i \ge 0, j \ge 0)$.

Let

$$S(U, V) = \sum_{n \geq -1} S_n(U, V),$$

where

$$S_n(U, V) = U \otimes_V \cdots \otimes_V U, \qquad (n+2) \text{ factors, } n \ge -1.$$

If $x = u_0 \otimes \cdots \otimes u_{n+1} \in S_n(U, V)$, $n \ge -1$, the grading in S(U, V) is given by

$$\deg x = n + \sum_{i=0}^{n+1} \deg u_i.$$

We define a map $\tau: S_{n-1}(U, V) \to S_n(U, V)$, $(n \ge 0)$ by the relation $\tau(x) = 1 \otimes x$, where $x \in S_{n-1}(U, V)$. Then τ is a graded-V-left-linear and U-right-linear map. For

$$\tau(vx) = 1 \otimes vx = (-1)^{\deg v} v \otimes x = (-1)^{\deg v} v(1 \otimes x)$$
$$= (-1)^{\deg v} v\tau(x),$$
$$\tau(xu) = 1 \otimes xu = (1 \otimes x)u = \tau(x)u.$$

where $x \in S_{n-1}(U, V)$, v is a homogeneous element of V and $u \in U$.

We now define two differentials $\partial_{\tau}: S_n(U, V) \to S_n(U, V)$ and $\partial_s: S_n(U, V) \to S_{n-1}(U, V)$ with the help of d and τ exactly as in [3, p. 166] and set $\partial = \partial_{\tau} + \partial_s$. We thus obtain a K-linear homogeneous map $\partial: S(U, V) \to S(U, V)$ of degree -1 such that $\partial^2 = 0$. The explicit formulas for ∂_{τ} and ∂_s are

$$\partial_{r}(u_{0} \otimes \cdots \otimes u_{n+1}) \\
= du_{0} \otimes u_{1} \otimes \cdots \otimes u_{n+1} \\
+ \sum_{i=1}^{n} (-1)^{i+\deg u_{0}+\cdots + \deg u_{i-1}} u_{0} \otimes \cdots \otimes du_{i} \otimes \cdots u_{n+1} \\
+ (-1)^{n+\deg u_{0}+\cdots + \deg u_{n}} u_{0} \otimes \cdots \otimes u_{n} \otimes du_{n+1}; \\
\partial_{s}(u_{0} \otimes \cdots \otimes u_{n+1}) \\
= \sum_{i=0}^{n} (-1)^{i+\deg u_{0}+\cdots + \deg u_{i}} u_{0} \otimes \cdots \otimes u_{i} u_{i+1} \otimes \cdots \otimes u_{n+1}$$

for $n \ge 0$.

Let

$$\mathfrak{B}(U,V) = \sum_{n\geq 0} S_n(U,V) = S(U,V)/S_{-1}(U,V).$$

Since $S_{-1}(U, V)$ is stable for ∂ , ∂ induces a differential (again denoted by ∂) in $\mathfrak{B}(U, V)$.

3. The relative cohomology of an algebra. Let M be a Λ -bimodule. The homomorphism $\epsilon: (U, V) \rightarrow (\Lambda, \Gamma)$ induces over M the structure of a U-bimodule such that

$$um = 0 = mu, \quad m \in M, u \in U, \deg u > 0,$$

and

$$(du)m = 0 = m(du), \quad m \in M, u \in U \text{ and deg } u = 1.$$

Let U^* [resp. V^*] be the opposite algebra of U [resp. V] and let $U^e = U \otimes_K U^*$ [resp. $V^e = V \otimes_K V^*$] denote the enveloping algebra of U [resp. V]. Then M can be given the structure of a left U^e -module. We denote by $\operatorname{Hom}_{U^e}(\mathfrak{G}(U, V), M)$ the direct sum

$$\sum_{n\geq 0} \operatorname{Hom}_{U^{\bullet}}(S_n(U,V),M).$$

It can be shown as in [3] that $\operatorname{Hom}_{U^e}(\mathfrak{B}(U, V), M)$ is a complex and the differential δ is given by $\delta f = f\partial$, where $f \in \operatorname{Hom}_{U^e}(\mathfrak{B}(U, V), M)$.

If we write $U^n = U \otimes_V \cdots \otimes_V U$ (*n* factors) with $U^0 = V$, there is a natural isomorphism

$$\alpha : \operatorname{Hom}_{V^{\bullet}}(U^{n}, M) \to \operatorname{Hom}_{U^{\bullet}}(S_{n}(U, V), M)$$

given by

$$(\alpha f)(u_0 \otimes \cdots \otimes u_{n+1}) = u_0 f(u_1 \otimes \cdots \otimes u_n) u_{n+1},$$

where $f \in \mathbf{Hom}_{V^e}(U^n, M)$ and $u_0, \dots, u_{n+1} \in U$. We now have an isomorphism

$$\operatorname{Hom}_{U^{\bullet}}(\mathfrak{G}(U,V),M) \approx \sum_{n>0} \operatorname{Hom}_{V^{\bullet}}(U^{n},M).$$

If $f \in \mathbf{Hom}_{V^e}(U^n, M)$, then $\delta f = g + h$, where $g \in \mathbf{Hom}_{V^e}(U^n, M)$ and $h \in \mathbf{Hom}_{V^e}(U^{n+1}, M)$ such that

$$g(u_1 \otimes \cdots \otimes u_n)$$

$$= \sum_{i=1}^n (-1)^{i+\deg u_1+\cdots+\deg u_{i-1}} f(u_1 \otimes \cdots \otimes du_i \otimes \cdots \otimes u_n),$$

$$h(u_1 \otimes \cdots \otimes u_{n+1}) = u_1 f(u_2 \otimes \cdots \otimes u_{n+1})$$

$$+ \sum_{i=1}^n (-1)^{i+\deg u_1+\cdots+\deg u_i} f(u_1 \otimes \cdots \otimes u_i u_{i+1} \otimes \cdots \otimes u_{n+1})$$

$$+ (-1)^{n+1+\deg u_1+\cdots+\deg u_{n+1}} f(u_1 \otimes \cdots \otimes u_n) u_{n+1}.$$

DEFINITION. The K-module $H^*(\operatorname{Hom}_{U^e}(\mathfrak{G}(U, V), M))$ is called the relative cohomology module of the K-algebra-couple (Λ, Γ) with coefficients in the Λ -bimodule M and is denoted by $H^*(\Lambda, \Gamma, M)$.

- 4. Interpretations of $H^0(\Lambda, \Gamma, M)$ and $H^1(\Lambda, \Gamma, M)$. The relative *n*-cochains with coefficients in M for n=0, 1, 2, 3 are as follows (cf. [3, p. 182]):
- (i) A relative 0-cochain is an element of $\operatorname{Hom}_{V'}(V, M)$ and may be identified with an element $m \in M$ for which $\gamma m = m\gamma$ for all $\gamma \in \Gamma$.
- (ii) A relative 1-cochain is an element of $\operatorname{Hom}_{V^e}(U_0, M)$ and is determined by a map $\chi: \Lambda \to M$ such that

$$\chi(\gamma\lambda) = \gamma\chi(\lambda), \quad \chi(\lambda\gamma) = \chi(\lambda)\gamma, \quad \lambda \in \Lambda, \ \gamma \in \Gamma.$$

(iii) A relative 2-cochain is an element of degree 2 of $\mathbf{Hom}_{V^e}(U \otimes_V U, M) + \mathbf{Hom}_{V^e}(U, M)$ and is determined by two maps

$$\chi_1: \Lambda \times \Lambda \to M,$$
 $\chi_2: N_0 \to M,$

such that $\chi_1(\gamma\lambda_1, \lambda_2) = \gamma\chi_1(\lambda_1, \lambda_2)$, $\chi_1(\lambda_1\gamma, \lambda_2) = \chi_1(\lambda_1, \gamma\lambda_2)$, $\chi_1(\lambda_1, \lambda_2\gamma)$ = $\chi_1(\lambda_1, \lambda_2)\gamma$, $\chi_2(\gamma n_0) = \gamma\chi_2(n_0)$, $\chi_2(n_0\gamma) = \chi_2(n_0)\gamma$, $\chi_2(l_0) = 0$; $\lambda_1, \lambda_2 \in \Lambda$, $\gamma \in \Gamma$, $n_0 \in N_0$, $l_0 \in L_0$.

(iv) A relative 3-cochain is determined by four maps

$$\pi_1: \Lambda \times \Lambda \times \Lambda \to M,$$
 $\pi_2: \Lambda \times N_0 \to M,$
 $\pi_3: N_0 \times \Lambda \to M,$
 $\pi_4: N_1 \to M,$

such that $\pi_1(\gamma \lambda_1, \lambda_2, \lambda_3) = \gamma \pi_1(\lambda_1, \lambda_2, \lambda_3)$, $\pi_1(\lambda_1 \gamma, \lambda_2, \lambda_3) = \pi_1(\lambda_1, \gamma \lambda_2, \lambda_3)$, $\pi_1(\lambda_1, \lambda_2 \gamma, \lambda_3) = \pi_1(\lambda_1, \lambda_2, \gamma \lambda_3)$, $\pi_1(\lambda_1, \lambda_2, \lambda_3) = \pi_1(\lambda_1, \lambda_2, \lambda_3) = \pi_1$

Similarly, a relative 4-cochain is determined by eight maps satisfying a number of relations.

The calculations show that $H^0(\Lambda, \Gamma, M)$ is isomorphic to the submodule of the K-module M consisting of elements $m \in M$ for which $\lambda m = m\lambda$ for every $\lambda \in \Lambda$. Hence $H^0(\Lambda, \Gamma, M)$ coincides with $H^0(\Lambda, M)$ defined in [3].

We shall call a K-homomorphism $f\colon \Lambda \to M$ a crossed Γ -homomorphism of Λ into M if (i) $f(\lambda_1\lambda_2) = \lambda_1 f(\lambda_2) + f(\lambda_1)\lambda_2$ for $\lambda_1, \lambda_2 \in \Lambda$; (ii) $f(\gamma\lambda) = \gamma f(\lambda), f(\lambda\gamma) = f(\lambda)\gamma$ for $\gamma \in \Gamma$, $\lambda \in \Lambda$. The condition (ii) is equivalent to $f(\gamma) = 0$ for $\gamma \in \Gamma$. We shall call a crossed Γ -homomorphism $f\colon \Lambda \to M$ a principal Γ -homomorphism if there exists an element $m \in M$ such that $f(\lambda) = \lambda m - m\lambda, \lambda \in \Lambda$. Such an element m must necessarily satisfy the relation $\gamma m = m\gamma$ for every $\gamma \in \Gamma$. The calculations then show that $H^1(\Lambda, \Gamma, M)$ is isomorphic to the quotient of the K-module of crossed Γ -homomorphisms of Λ into M by the submodule of principal Γ -homomorphisms of Λ into M. There is a natural homomorphism

$$H^1(\Lambda, \Gamma, M) \to H^1(\Lambda, M),$$

where $H^1(\Lambda, M)$ is the 1-cohomology module defined in [3]. This homomorphism is actually a monomorphism, since a principal K-

homomorphism which is also a crossed Γ -homomorphism is a principal Γ -homomorphism.

5. Interpretation of $H^2(\Lambda, \Gamma, M)$. Let $\beta \colon E \to \Lambda$ be an onto homomorphism of algebras with kernel M and let $\rho \colon \Gamma \to E$ be a homomorphism of algebras such that (i) $\beta \rho$ is the identity map over Γ , (ii) ρ can be extended to a map $\bar{\rho} \colon \Lambda \to E$ for which $\beta \bar{\rho}$ is the identity map over Λ and $\bar{\rho}(\gamma \lambda) = \rho(\gamma) \bar{\rho}(\lambda)$, $\bar{\rho}(\lambda \gamma) = \bar{\rho}(\lambda) \rho(\gamma)$, $\lambda \subset \Lambda$, $\gamma \subset \Gamma$. We say that the triple (E, β, ρ) is a relative extension of the algebra-couple (Λ, Γ) with kernel M. We note that M is a subalgebra of E not necessarily having an identity. Two relative extensions (E', β, ρ) and (E', β', ρ') of the algebra-couple (Λ, Γ) with the same kernel M are said to be equivalent if there exists an isomorphism $\phi \colon E \to E'$ such that $\beta = \beta' \phi$ and $\phi \rho = \rho'$.

A relative extension (E, β, ρ) is said to be special if the product of any two elements of the kernel M is zero. In this case β induces a Λ -bimodule structure over M.

THEOREM 1. Let (Λ, Γ) be an algebra-couple and let M be a Λ -bimodule. Then there exists a natural one-one correspondence between the relative cohomology module $H^2(\Lambda, \Gamma, M)$ and the set of equivalence classes of special relative extensions of the algebra-couple (Λ, Γ) with kernel M which induce over M the given Λ -bimodule structure.

The proof is similar to that of [3, Theorem 4].

6. Interpretation of $H^3(\Lambda, \Gamma, M)$. Let A be an algebra not necessarily having an identity. Let (E, β, ρ) be a relative extension of the algebra-couple (Λ, Γ) with kernel A. We do not suppose that the product of any two elements of A is zero. Let M_A denote the algebra of bimultiplications of A and let P_A denote the quotient algebra of exterior bimultiplications of A [3, p. 197]. Since A is a two-sided ideal in E, the map which assigns to every element e of E the inner bimultiplication of E induced by e gives a homomorphism of algebras $\nu: E \rightarrow M_A$. Since A is mapped into the subalgebra of inner bimultiplications, ν induces a homomorphism of algebras $\theta: \Lambda \rightarrow P_A$. If we compose ν with the homomorphism $\rho: \Gamma \rightarrow E$, we get a homomorphism of algebras $\sigma: \Gamma \to M_A$. Since ρ can be extended to a map $\bar{\rho}: \Lambda \to E$ for which $\beta \bar{\rho} = \mathrm{id}_{\Lambda}$, and $\bar{\rho}(\gamma \lambda) = \rho(\gamma) \bar{\rho}(\lambda)$, $\bar{\rho}(\lambda \gamma) = \bar{\rho}(\lambda) \rho(\gamma)$ where $\lambda \in \Lambda$, $\gamma \in \Gamma$, it follows that σ can be extended to a map $\bar{\sigma} : \Lambda \to M_A$ for which $\zeta \bar{\sigma} = \theta$, and $\bar{\sigma}(\gamma \lambda) = \sigma(\gamma) \bar{\sigma}(\lambda)$, $\bar{\sigma}(\lambda \gamma) = \bar{\sigma}(\lambda) \sigma(\gamma)$ where $\lambda \in \Lambda$, $\gamma \in \Gamma$, ζ being the natural homomorphism of M_A onto P_A . We see that a relative extension determines two homomorphisms of algebras θ and σ which satisfy the properties just described. Both θ and σ are regular homomorphisms [3, p. 199].

Conversely, suppose we are given two regular homomorphisms $\theta \colon \Lambda \to P_A$ and $\sigma \colon \Gamma \to M_A$ which are such that it is possible to define a map $\bar{\sigma} \colon \Lambda \to M_A$ having the following properties: (i) $\zeta \bar{\sigma} = \theta$, (ii) the restriction of the map $\bar{\sigma} \colon \Lambda \to M_A$ to Γ is the given homomorphism $\sigma \colon \Gamma \to M_A$, and (iii) $\bar{\sigma}(\gamma \lambda) = \sigma(\gamma) \bar{\sigma}(\lambda)$, $\bar{\sigma}(\lambda \gamma) = \bar{\sigma}(\lambda) \sigma(\gamma)$ where $\lambda \in \Lambda$, $\gamma \in \Gamma$. Does there exist a relative extension (E, β, ρ) of the algebracouple (Λ, Γ) with kernel A which determines the two regular homomorphisms θ and σ ? We shall associate with the pair (θ, σ) an element of the relative cohomology module $H^3(\Lambda, \Gamma, C_A)$, where C_A is the bicentre [3, p. 198] of A. We shall call this element the obstruction of (θ, σ) and shall denote it by $\xi_{(\theta, \sigma)}$.

Choose a map $\bar{\sigma}: \Lambda \to M_A$ having the properties given above. Then $\bar{\sigma}(0) = 0$ and $\bar{\sigma}(1) = 1$, the identity bimultiplication. We note that the quotient algebra A/C_A is isomorphic to the algebra of inner bimultiplications of A, which is the kernel of the natural homomorphism $\zeta: M_A \to P_A$. We identify them and define two maps

$$\bar{\chi}_1: \Lambda \times \Lambda \to A/C_A,$$

 $\bar{\chi}_2: N_0 \to A/C_A,$

such that

$$egin{aligned} ar{m{\chi}}_1(\lambda_1,\lambda_2) &= \sigma(\lambda_1\lambda_2) \,-\, \sigma(\lambda_1)\sigma(\lambda_2), \ ar{m{\chi}}_2(m{n}_0) &= \, \sum_1 \, k_i \sigma(\lambda_i), \end{aligned}$$

where λ_1 , λ_2 , $\lambda_i \in \Lambda$, $n_0 = \sum_i k_i(\lambda_i)$, $\sum_i k_i \lambda_i = 0$. Now A and A/C_A are M_A -bimodules and the natural map $\mu \colon A \to A/C_A$ which associates with every element of A the inner bimultiplication of A induced by it, is a homomorphism of M_A -bimodules. Thanks to the homomorphism $\sigma \colon \Gamma \to M_A$ we can consider A and A/C_A as Γ -bimodules and μ as a homomorphism of Γ -bimodules. We can now define two maps

$$\chi_1: \Lambda \times \Lambda \to A$$
 $\chi_2: N_0 \to A$

such that $\mu \chi_1 = \bar{\chi}_1$, $\mu \chi_2 = \bar{\chi}_2$. It is easy to verify that the maps χ_1 and χ_2 satisfy all the six relations which the two maps χ_1 and χ_2 , which determine a relative 2-cochain, satisfy although here A is not a Λ -bimodule. We now define four maps

$$\pi_1: \ \Lambda \times \Lambda \times \Lambda \to C_A,$$
 $\pi_2: \ \Lambda \times N_0 \to C_A,$
 $\pi_3: \ N_0 \times \Lambda \to C_A,$
 $\pi_4: \ N_1 \to C_A,$

exactly as in [3, p. 200] in terms of χ_1 and χ_2 . It is easy to verify that these four maps satisfy all the relations necessary to determine a relative 3-cochain with coefficients in the Λ -bimodule C_A . It can be shown as in [3, Theorem 5] that this relative 3-cochain is a relative 3-cocycle and that it determines an element of $H^3(\Lambda, \Gamma, C_A)$ which is independent of the choice of the map $\bar{\sigma}: \Lambda \to M_A$. This element is called the obstruction of (θ, σ) . We are now in a position to answer the question raised at the beginning of this section.

THEOREM 2. The pair of regular homomorphisms (θ, σ) is induced by a relative extension if and only if the obstruction $\xi_{(\theta, \sigma)} = 0$.

The proof is similar to that of [3, Theorem 6].

Finally, the K-module $H^3(\Lambda, \Gamma, M)$ can be interpreted in terms of the pairs of regular homomorphisms (θ, σ) .

THEOREM 3. Let (Λ, Γ) be an algebra-couple and let M be a Λ -bi-module. Let f be a relative 3-cocycle of (Λ, Γ) with coefficients in M. Then there exist an algebra A having M as its bicentre and two regular homomorphisms $\theta \colon \Lambda \to P_A$ and $\sigma \colon \Gamma \to M_A$ satisfying the conditions (i), (ii), and (iii) described above such that θ induces over M the given Λ -bimodule structure and that f is the obstruction of the pair (θ, σ) .

The proof is similar to that of [3, Theorem 8], but one has to start with the algebra

$$L = U_0 + U_0 \otimes_{V} U_0 + \cdots + U_0 \otimes_{V} \cdots \otimes_{V} U_0 + \cdots$$

instead of the algebra L in [3, p. 205], in which the tensor products were taken over K.

REMARK. It would be interesting to investigate whether the relative cohomology proposed in this paper reduces to the absolute cohomology given in [3] when we take for Γ the image of K in Λ under the natural homomorphism $K \rightarrow \Lambda$ which maps the identity of K into the identity of Λ . If we denote the image of K in Λ by K itself, it is evident that an absolute cochain of Λ [3, p. 182] is not a relative cochain of the algebra-couple (Λ, K) , since the maps which determine it need not satisfy any relations of the type described in §4. Yet the interpretations of $H^0(\Lambda, \Gamma, M)$ and $H^1(\Lambda, \Gamma, M)$ show that $H^0(\Lambda, K, M) \approx H^0(\Lambda, M)$ and $H^1(\Lambda, K, M) \approx H^1(\Lambda, M)$. Since the relative cohomology has been described in terms of the canonically constructed algebra-resolutions U and V of Λ and Γ respectively, the first task, as already indicated in the Introduction, is to construct a category of objects $(U, V, \Lambda, \Gamma, \epsilon)$ (cf. [3, Chapter II]) and to prove theorems analogous to [3, Theorems 1, 2]. The second task will be to see

whether we can take $V=\Gamma$, when Γ is K-projective. If this is found possible, we shall have shown that the relative cohomology does reduce to the absolute cohomology when we take $\Gamma=K$.

REFERENCES

- 1. H. Cartan and S. Eilenberg, *Homological algebra*, Princeton Univ. Press, Princeton, N. J., 1956.
- 2. G. Hochschild, Relative homological algebra, Trans. Amer. Math. Soc. 82 (1956), 246-269.
- 3. U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. 78 (1961), 163-209.

Kurukshetra University, Kurukshetra (Punjab), India

DIRECT PROOF OF THE BASIC THEOREM ON MULTIPARTITE PARTITIONS

E. M. WRIGHT1

In what follows all small latin letters denote non-negative integers, while N and N_{ms} are j-partite numbers, i.e. vectors or row-matrices of j dimensions whose components are non-negative integers. In particular, $N = (n_1, n_2, \dots, n_j)$. We write $q_k(N)$ for the number of partitions of N into just k parts and $r_k(N)$ for the number of partitions of N into just k different parts.

Let $\pi = \pi(k)$ be a partition of k into h(1) parts 1, h(2) parts 2 and so on, so that $k = \sum_{m} mh(m)$. We write

$$H(\pi) = \prod_{m} \{h(m) | m^{h(m)}\}^{-1}$$

where, as usual, 0!=1, and $D(\pi, N)$ for the number of solutions of

(1)
$$N = \sum_{m} \sum_{s=1}^{h(m)} m N_{ms},$$

where the order of the N_{ms} is relevant. Clearly

(2)
$$D(\pi, N) = \prod_{i=1}^{j} D(\pi, n_i).$$

Again, for |X| < 1,

Received by the editors February 3, 1963.

¹ Research sponsored by the Office, Chief of Research and Development, U. S. Department of the Army, through its European Research Office under contract DA-91-591-EUC-2670.