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Introduction. In this paper we propose a relative cohomology for

associative algebras over a commutative ring. A relative cohomology

for associative algebras over afield has been given by Hochschild [2].

In [3] the author has given a cohomology for associative algebras

over a commutative ring which is a generalisation of Hochschild's

cohomology for associative algebras over a field, a description of

which can be found in [l]. In order to be able to show that the rela-

tive cohomology proposed here is in the same way a true generalisa-

tion of Hochschild's relative cohomology, we require a theorem analo-

gous to [3, Theorem l]. We are unable to prove such a theorem.

I am grateful to the referee for his useful suggestions.

1. The tensor product and Horn of graded modules over graded

rings. Let R = 23p*o Rp be a graded ring, A = 23pïo Ap be a graded
right A-module and 23= 23p£0 23" be a graded left A-module. Let F

be a graded free abelian group generated by the pairs (a, b), where

aEA", bEB" (p'èO, 3^0), the pair (a, b) being a homogeneous ele-

ment of degree p+q. Let G be the graded subgroup generated by the

homogeneous elements of the form (a+a', b) — (a, b) — (a', b),

(a, b + b')-(a, b)-(a, V), and (ak, b)-(-\)r(a,kb), where a, a'EA";

b, b'EB«; kERT (p è0, q^O, r l>0). The factor group F/G is a graded

abelian group which we call the tensor product of the graded right

A-module A and the graded left A-module 23 over the graded ring R

and denote it by A ®rB. We denote the image of the element (a, b)

of Ain^®B23 by a®b. Then (a+a')®b = a®b+a'®b, a®(b + b')

= a®b+a®b', and ak®b= ( — l)ra®\b.

Suppose now that both A and 23 are graded left A-modules. We

say that f: A—>B is a graded-A-linear map if /(a+a') =/(o) +/(a'),

and f(\a) = ( — l)'\f(a), where a, a'EA and X is a homogeneous ele-

ment of R of degree r. The set of all such graded-A-linear maps is an

abelian group which we denote by HomK(A, 23). When A and 23 are

both right A-modules, we define HomÄ(,4, 23) in an analogous fashion.

The tensor product and Horn defined here are different from the

usual tensor product and Horn of graded modules over a graded ring

inasmuch as the grading of the base ring A is also taken into ac-

count. We shall have occasion to use the usual Horn also in the sequel.
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2. The complex <$>(U, V). By a set-couple [resp. module-couple,

algebra-couple] (P, Q) we mean that P is a set [resp. module, alge-

bra] and Q is a subset [resp. submodule, subalgebra] of P. By a map

[resp. homomorphism] /: (P, Q)—>(P', Q') of set-couples [resp.

module-couples, algebra-couples] we understand a map [resp. homo-

morphism] /: P-^P' such that f(Q) EQ'-
Let K be a commutative ring with identity 1=^0. By an algebra

we shall mean an associative algebra over K and except when men-

tion is made to the contrary an associative algebra will be understood

to possess an identity. A homomorphism of algebras will be under-

stood to map the identity (if there exists one) into the identity.

Let (A, T) be an algebra-couple. We construct (cf. [3, p. 172]) a

differential graded algebra-couple (U, V), where U= 2»so Un,

V= £nïo Vn, together with a homomorphism of differential graded

algebra-couples e: (U, V)—»(A, T), the differential and grading in

(A, T) being trivial, having the following properties:

(i) For every «^0, Un = K(Xn) [resp. Vn = K(Yn)], the K-iree

module having the set X„ [resp. F„ ] as base.

(ii) An associative multiplication is defined in U [resp. V] by K-

linear extension of the maps of set-couples

(Xi X Xy,   Y i X   Fy) —» (Xj+y,   Y¿+y)

for which (x,-xy) •xt = Xj-(xyX(b); x,GXt-, xyGXy, xkEXk, where

x,-xy denotes the image of (x», Xy) in Xi+y. In particular, (U0, V0) is

an associative algebra-couple.

(iii) The restriction of the homomorphism e: (Co, Fo)—»(A, T) to

(Xo, Fo) is a bijective map which preserves multiplication.

(iv) For each w^l, there is a homomorphism of X-module-

couples dn: (Un, Vn)—>(C„_i, F„_i) such that for »=1, the restriction

of ¿i to (Xi, Fi) is a bijective map of (Xi, Yi) onto the kernel-couple

(A^o, ¿o) of e and that for w^2, the restriction of dH to (X„, Fn) is a

bijective map of (Xn, F„) onto the kernel-couple (Nn-\, Ln_i) of

dn_i. We define do = 0.

(v)   We have di+y(Xi-Xy) = (diXi) -Xy+( — l){Xr (dyXy) ; XiEXit XyGXy

(î^O, i^O), which by X-linearity gives an analogous relation when

XiEUi, XjEUj(i^0,j^0).
Let

S(U, V) =   £ 5n(C, V),
nS-1

where

5„(C, F) = U ®v ■ ■ • ®vU, (n + 2) factors, «Ï-1.
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If x = wo® • • • ®un+iESn(U, V), »St—1, the grading in S(U, V)

is given by
n+l

deg x = n + 23 deg «¿.

We define a map r: S„-i(U, V)^>Sn(U, V), (w^O) by the relation

t(x) = 1®x, where xESn-i(U, V). Then t is a graded-F-left-linear

and [/-right-linear map. For

t(dx)  =  1 ® VX =  (—l)*6«»» ® X =  (— l)deB » v(l ® x)

=   (— l)deeVVT(x),

t(xu) = 1 ® xu = (1 ® x)u = r(x)u,

where xESn-i(U, V), v is a homogeneous element of F and uEU.

We now define two differentials dr: Sn(U, V)—>Sn(U, V) and

ds: 5„(Í7, F)—»5„_i(i7, F) with the help of d and t exactly as in [3,

p. 166] and set d=dr+d¡. We thus obtain a A-linear homogeneous

map d:S(U, V)^>S(U, V) of degree -1 such that d2 = 0. The explicit

formulas for dr and d¡ are

dr(Uo ®   •   •   •   ®  Mn+l)

= duo ® U\ ®  • • ■ ® M„+i

n

+   23 (-l)i+deS"»+---+degu'-l«o ®   •   •   •   ® dUi ®   ■   •   •  Un+1
¿-1

+  (-l)"+des»0+---+iegu„Mo(g,   -   -   -   <g) «„ ® dun+i;

d,(Uo ®   •   •   ■   ® Mn+l)

n

=   23  (—l)<+de«a<'-'"-,+de«"''«o®   •   •   •   ®M,Mi+i®   •  •   •   ®M„+i

t=0

for n^O.

Let

<*(u, v) = 23 sn(u, v) = s(u, v)/s^(u, v).
naO

Since 5_i( U, V) is stable for d, d induces a differential (again denoted

byd)inö5([/, F).

3. The relative cohomology of an algebra. Let M be a A-bimodule.

The homomorphism e: (£/, F)—>(A, T) induces over 2lf the structure

of a [/-bimodule such that

urn = 0 = w«,       )» G ¥, » G f, deg « > 0,

and
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(du)m = 0 = m(du),       m E M, u E U and deg u = 1.

Let U* [resp. F*] be the opposite algebra of U [resp. V] and let

Ue— U®k U* [resp. V'= V®K V*] denote the enveloping algebra of

U [resp. V]. Then M can be given the structure of a left Ce-module.

We denote by Homue((&(U, V), M) the direct sum

¿2Homv(Sn(U,V),M).

It can be shown as in [3] that Homu'(<$>(U, V), M) is a complex and

the differential S is given by 8f=fd, where /GHomr/((B(C V), M).

If we write Un=U®v • • • ®vU (n factors) with U°= V, there is a

natural isomorphism

a: Komv(Un, M) -» Homr/'(5„(C, F), ilf)

given by

(a/)(«0 ®   •  •  •  ® Un+l) = «o/(«i ®  • • •  ® Mn)«»+1,

where /GHomv(C7n, M) and m0, • • • , «n+iGC We now have an

isomorphism

Homt/.((B(C,F),M) « 53Homr'(l/", Jf).
».SO

If /GHoim*(Cn, M), then S/=g+Ä, where gGHomv*(Cn, M) and

ÄGHomF'(C"+1, M) such that

g(Kl   <g)    •   ■   •   ®   Un)

n

=   £  (_l)<+deg«l+---+degUi-1y(Ml ®   .   .   .   ® dMf ®   .   .   .   (g) Un),

i~\

h(Ui ®   -   •   •   ® Un+i)   =  «i/(«2 ®   •   •  •   ®«n+l)

n

+   Z  (-l)i+de«"l+---+deS "</(«! ®    ■   ■   ■   ®  UiUi+l   ®   ■   ■   ■   ®  Un+l)

i-l

+   (-l)n+l+deg</l+"-+deB«„+,y(Ml  (g)   .   .   .   g)  «B)M„+1.

Definition. The X-module H*(HomV'((ñ(U, V), M)) is called the

relative cohomology module of the ií-algebra-couple (A, T) with

coefficients in the A-bimodule M and is denoted by H*(A, V, M).

4. Interpretations of Ha(A, T, M) and H(A, V, M). The relative

w-cochains with coefficients in M for n — Q, 1, 2, 3 are as follows (cf.

[3, p. 182]):
(i) A relative 0-cochain is an element of Homye(F, M) and may be

identified with an element mEM for which ym = my for all 7GT.

(ii) A relative 1-cochain is an element of Hompe(Co, M) and is

determined by a map x: A—>Af such that
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x(tX) = 7x0),      x(ky) = x(k)y,      A G A, 7 G r.

(iii) A relative 2-cochain is an element of degree 2 of

HomV'(U®vU, M)+1íomv'(U, M) and is determined by two maps

Xi: AXA-»Ji,

X2: NB-^M,

such that Xi(7Ai. A2)=TXi(Ai, X2), X1O1Y, ̂ )=Xi0^i, 7A2), X1O1. X27)

= Xi(Xi> ̂ 2)7. X2(t»o) =7X2(wo), X2(wo7) =X2(wo)7. X2Q0) =0; Xi, X2GA,

7Gr, «0GA0, I0EL0.

(iv) A relative 3-cochain is determined by four maps

n: AX AX A^M,

ir2: A X Ao -> Af,

7T3: Ao X A->Jf,

7T4: Ai —♦ M,

such that iri(yki, X2, X3) =77Ti(Xi, X2, X3), iriCkry, X2, X3) = iri(Xi, 7X2, X3),

7Ti(Xi, X27. X3) =7Ti(Xi, X2, 7X3), 7Ti(Xi, X2, X37) =iri(Xi, X2, X3)7» ̂ 2(7^, »0)

= 7ir2(X, «0), ir2(ky, n0)=ir2(k, yn0), ir2(k, n0y)=ir2(k, «0)7. ^(X, /o)

= 0, t3(7«o, X) = 7tt3(wo, X), ir3(«o7. X) = ir3(»o, 7^), Tr3(»o, 7^)

= ir2(»o, X)7, ir3(/o, X) = 0, ir4(7»i) =yiri(ni), iri(niy)=irt(ni)y, ir4(¿i)

= 0; X, Xi, X2, X3GA, 7Gr, m0GA70, »iGAi, and /<,, ¿íGAi.

Similarly, a relative 4-cochain is determined by eight maps satisfy-

ing a number of relations.

The calculations show that H°(A, T, M) is isomorphic to the sub-

module of the A-module M consisting of elements mEM for which

\m = mk for every XGA. Hence 2?°(A, T, M) coincides with 2î0(A, M)

defined in [3].

We shall call a A-homomorphism /: A—>M a crossed r-homomor-

phism of A into M if (i) /(XtX2) = XX/(X2) +/(\1)X, for Xi, X2GA ; (ii) /(7X)
= 7/(X),/(X7) =/(X)7 for 7GT, XGA. The condition (ii) is equivalent

to/Ov) =0 for7GT. We shall call a crossed T-homomorphism/: A—=>M

a principal T-homomorphism if there exists an element mEM. such

that/(X) =\m — mk, XGA. Such an element m must necessarily satisfy

the relation ym = my for every 7ET. The calculations then show that

2î1(A, T, M) is isomorphic to the quotient of the A-module of crossed

T-homomorphisms of A into M by the submodule of principal T-

homomorphisms of A into M. There is a natural homomorphism

Hl(A, r, M) -> H\A, M),

where ^(A, M) is the 1-cohomology module defined in [3]. This

homomorphism is actually a monomorphism, since a principal A-
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homomorphism which is also a crossed T-homomorphism is a principal

T-homomorphism.

5. Interpretation of H2(A, T, M). Let ß: E—>A be an onto homo-

morphism of algebras with kernel M and let p: r—>£ be a homomor-

phism of algebras such that (i) ßp is the identity map over T, (ii) p can

be extended to a map p:A—>E for which ßp is the identity map over

A and p(y\) = p(y)p(\), p(ky) = p(X)p(t), XGA, 7GI1. We say that the
triple (E, ß, p) is a relative extension of the algebra-couple (A, T)

with kernel M. We note that M is a subalgebra of E not necessarily

having an identity. Two relative extensions (£', ß, p) and (£', ß', p')

of the algebra-couple (A, V) with the same kernel M are said to be

equivalent if there exists an isomorphism <p: E—>E' such that ß = ß'<p

and <pp — p'.

A relative extension (E, ß, p) is said to be special if the product of

any two elements of the kernel M is zero. In this case ß induces a

A-bimodule structure over M.

Theorem 1. Let (A, T) be an algebra-couple and let M be a A-bimod-

ule. Then there exists a natural one-one correspondence between the

relative cohomology module H2(A, Y, M) and the set of equivalence classes

of special relative extensions of the algebra-couple (A, T) with kernel M

which induce over M the given A-bimodule structure.

The proof is similar to that of [3, Theorem 4].

6. Interpretation of LP(A, Y, M). Let A be an algebra not neces-

sarily having an identity. Let (E, ß, p) be a relative extension of the

algebra-couple (A, T) with kernel A. We do not suppose that the

product of any two elements of A is zero. Let MA denote the algebra

of bimultiplications of A and let Pa denote the quotient algebra of

exterior bimultiplications of A [3, p. 197]. Since A is a two-sided

ideal in E, the map which assigns to every element e of E the inner

bimultiplication of E induced by e gives a homomorphism of algebras

v: E—>MA. Since A is mapped into the subalgebra of inner bimulti-

plications, v induces a homomorphism of algebras 0:A—>P¿. If we

compose v with the homomorphism p: T—>£, we get a homomorphism

of algebras a: Y—>Ma- Since p can be extended to a map p: A—>E for

which ßp = idA, and p(y\) =p(y)p(\), p(hy) = pÇk)p(y) where XGA,

yEY, it follows that a can be extended to a map â: A-+MA for which

Çâ = 9, and ä(yX)=a(y)ä(X), ä(\y) = à(X)<r(y) where XGA, 7GT, f be-
ing the natural homomorphism of MA onto Pa- We see that a relative

extension determines two homomorphisms of algebras 9 and cr which

satisfy the properties just described. Both 9 and a are regular homo-

morphisms [3, p. 199].
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Conversely, suppose we are given two regular homomorphisms

0:A—>Pa and a: T^Ma which are such that it is possible to define

a map <x:A—>A/a having the following properties: (i) ÇB = Q, (ii) the

restriction of the map ¿r:A—>MA to T is the given homomorphism

<t:T—>Ma, and (iii) ¿(yk) = <x(y)ff(k), cr(ky)=ff(k)a(y) where XGA,

7GT. Does there exist a relative extension (E, ß, p) of the algebra-

couple (A, T) with kernel A which determines the two regular homo-

morphisms 8 and <r? We shall associate with the pair (9, <r) an element

of the relative cohomology module H3(A, Y, Ca), where Ca is the bi-

centre [3, p. 198] of A. We shall call this element the obstruction of

(9, a) and shall denote it by £(»,»)•

Choose a map ¿r: A—>Ma having the properties given above. Then

¿r(0) =0 and i(l) = 1, the identity bimultiplication. We note that the

quotient algebra A/Ca is isomorphic to the algebra of inner bimulti-

plications of A, which is the kernel of the natural homomorphism

f : MA—''Pa- We identify them and define two maps

Xi: AXA->A/CA,

X2: Ao -> A/Ca,

such that

XiQw, A2) = o-(AiX2) — c(Ai)cr(A2),

X2(wo) = 23 kiff(\i),
1

where Xi, X2, X¿GA, w0= 23¿&¿0¿)> ̂L,ikik, = 0. Now A and A/Ca
are Mx-bimodules and the natural map ß: A-^A/Ca which associates

with every element of A the inner bimultiplication of A induced by

it, is a homomorphism of Af^-bimodules. Thanks to the homomor-

phism a: T—*Ma we can consider A and A/Ca as T-bimodules and ß

as a homomorphism of T-bimodules. We can now define two maps

Xi: AX A-+A

X2- No —> A

such that juxi = Xi> MX2 = X> It is easy to verify that the maps xi and

X2 satisfy all the six relations which the two maps xi and X2, which

determine a relative 2-cochain, satisfy although here A is not a

A-bimodule. We now define four maps

in: AXAXA-^Ci,

ir2: AX No-^Ca,

5t3: AoX A^Ci,

x4: Ai —> Ca,
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exactly as in [3, p. 200] in terms of xi and X2- It is easy to verify

that these four maps satisfy all the relations necessary to determine

a relative 3-cochain with coefficients in the A-bimodule Ca- It can be

shown as in [3, Theorem 5] that this relative 3-cochain is a relative

3-cocycle and that it determines an element of H3(A, Y, Ca) which is

independent of the choice of the map <t:A-^Ma- This element is

called the obstruction of (9, a). We are now in a position to answer

the question raised at the beginning of this section.

Theorem 2. The pair of regular homomorphisms (9, a) is induced by

a relative extension if and only if the obstruction £(»,„) = 0.

The proof is similar to that of [3, Theorem 6].

Finally, the X-module HZ(A, Y, M) can be interpreted in terms of

the pairs of regular homomorphisms (9, a).

Theorem 3. Let (A, Y) be an algebra-couple and let M be a A-bi-

module. Let f be a relative 3-cocycle of (A, Y) with coefficients in M.

Then there exist an algebra A having M as its bicentre and two regular

homomorphisms 0:A—>Pa and <t:Y^>Ma satisfying the conditions (i),

(ii), and (iii) described above such that 9 induces over M the given A-

bimodule structure and that f is the obstruction of the pair (9, a).

The proof is similar to that of [3, Theorem 8], but one has to start

with the algebra

L= U0+ U„®vU0+ ■ • ■ + Uo®v ■ ■ ■ ®vU0+ ■ • •

instead of the algebra L in [3, p. 205], in which the tensor products

were taken over K.

Remark. It would be interesting to investigate whether the relative

cohomology proposed in this paper reduces to the absolute cohomol-

ogy given in [3] when we take for Y the image of K in A under the

natural homomorphism K-+A which maps the identity of K into the

identity of A. If we denote the image of K in A by K itself, it is evi-

dent that an absolute cochain of A [3, p. 182] is not a relative co-

chain of the algebra-couple (A, K), since the maps which determine

it need not satisfy any relations of the type described in §4. Yet the

interpretations of H°(A, Y, M)and H^A, Y, If) show that H°(A, K, M)

«#°(A, M) and iP(A, K, M) *>Hl(A, M). Since the relative cohomol-

ogy has been described in terms of the canonically constructed alge-

bra-resolutions U and F of A and Y respectively, the first task, as

already indicated in the Introduction, is to construct a category of

objects (U, V, A, Y, e) (cf. [3, Chapter II]) and to prove theorems

analogous to  [3, Theorems 1, 2]. The second task will be to see
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whether we can take V=T, when T is A-projective. If this is found

possible, we shall have shown that the relative cohomology does re-

duce to the absolute cohomology when we take T = A.
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DIRECT PROOF OF THE BASIC THEOREM ON
MULTIPARTITE PARTITIONS

E. M. WRIGHT1

In what follows all small latin letters denote non-negative integers,

while N and Nm, are/-partite numbers, i.e. vectors or row-matrices of

/ dimensions whose components are non-negative integers. In par-

ticular, N= (»i, n2, ■ ■ • , My). We write qk(N) for the number of par-

titions of N into just k parts and rh(N) for the number of partitions

of N into just k different parts.

Let ir = ir(k) be a partition of k into A(l) parts 1, h(2) parts 2 and

so on, so that k= 23m mh(m). We write

8M = II {h(m)\mh^}-1
m

where, as usual, 0!= 1, and D(ir, N) lor the number of solutions of

Mm)

(1) A - 23 E t*Nm»

where the order of the Nma is relevant. Clearly

(2) D(ir,N) = t[D(ir,m).
•=i

Again, for | X\ <1,
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