A RELATIVE COHOMOLOGY FOR ASSOCIATIVE ALGEBRAS
U. SHUKLA

Introduction. In this paper we propose a relative cohomology for
associative algebras over a commutative ring. A relative cohomology
for associative algebras over a field has been given by Hochschild [2].
In [3] the author has given a cohomology for associative algebras
over a commutative ring which is a generalisation of Hochschild’s
cohomology for associative algebras over a field, a description of
which can be found in [1]. In order to be able to show that the rela-
tive cohomology proposed here is in the same way a true generalisa-
tion of Hochschild's relative cohomology, we require a theorem analo-
gous to [3, Theorem 1]. We are unable to prove such a theorem.

I am grateful to the referee for his useful suggestions.

1. The tensor product and Hom of graded modules over graded
rings. Let R = ) _,,0 R” be a graded ring, A= D _,,0 A? be a graded
right R-module and B= ) _,.¢ B? be a graded left R-module. Let F
be a graded free abelian group generated by the pairs (a, b), where
aC AP b&B? (p=0, ¢=0), the pair (a, b) being a homogeneous ele-
ment of degree p-+g. Let G be the graded subgroup generated by the
homogeneous elements of the form (ea+a’, b)—(a, b)—(a’, b),
(a, b+b') —(a, b) — (e, b’), and (a\, b) — (—1)"(a, \b), where a, a’ CA?;
b, VC€BY4;NCR" (p=0,¢=0,7r=0). The factor group F/G is a graded
abelian group which we call the tensor product of the gradedright
R-module 4 and the graded left R-module B over the graded ring R
and denote it by 4 ® kB. We denote the image of the element (a, b)
of Fin AQrB by a®b. Then (¢+d')®b=a®b+a’Rb, a® (b+b')
=a®b+a®b’, and aA@b=(—1)"a @Nb.

Suppose now that both 4 and B are graded left R-modules. We
say that f: A—B is a graded-R-linear map if fla+a’) =f(a)+f(a’),
and f(\a) =(—1)"Af(a), where a, @’ €4 and X is a homogeneous ele-
ment of R of degree r. The set of all such graded-R-linear maps is an
abelian group which we denote by Homp(4, B). When 4 and B are
both right R-modules, we define Homg(4, B) in an analogous fashion.

The tensor product and Hom defined here are different from the
usual tensor product and Hom of graded modules over a graded ring
inasmuch as the grading of the base ring R is also taken into ac-
count. We shall have occasion to use the usual Hom also in the sequel.
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2. The complex ®(U, V). By a set-couple [resp. module-couple,
algebra-couple] (P, Q) we mean that P is a set [resp. module, alge-
bra] and Q is a subset [resp. submodule, subalgebra] of P. By a map
[resp. homomorphism] f: (P, Q)—(P’, Q') of set-couples [resp.
module-couples, algebra-couples| we understand a map [resp. homo-
morphism ] f: P—P’ such that f(Q) CQ".

Let K be a commutative ring with identity 1#0. By an algebra
we shall mean an associative algebra over K and except when men-
tion is made to the contrary an associative algebra will be understood
to possess an identity. A homomorphism of algebras will be under-
stood to map the identity (if there exists one) into the identity.

Let (A, T') be an algebra-couple. We construct (cf. [3, p. 172]) a
differential graded algebra-couple (U, V), where U= Zn;o U,,
V= Z,,;o V., together with a homomorphism of differential graded
algebra-couples e: (U, V)—(A, T'), the differential and grading in
(A, T) being trivial, having the following properties:

(i) For every n=0, U,=K(X,) [resp. V.=K(V,)], the K-free
module having the set X, [resp. ¥, ] as base.

(i) An associative multiplication is defined in U [resp. V] by K-
linear extension of the maps of set-couples

(X: X X;, Vi X Yj) = (Xiyj, Vi)

for which (x;-x;)-xx=2x:(x;-%1); :EX,;, x,EX;, x:E X, where
x;-x; denotes the image of (x;, x;) in Xy4,. In particular, (U, V) is
an associative algebra-couple.

(iii) The restriction of the homomorphism €: (U,, Vo)—(A, T') to
(X, Yy) is a bijective map which preserves multiplication.

(iv) For each n=1, there is a homomorphism of K-module-
couples d,: (Un, Vi) —>(Un-1, Vaoi) such that for n=1, the restriction
of d; to (X;, Y1) is a bijective map of (X, Y1) onto the kernel-couple
(N, Lo) of € and that for n=2, the restriction of d, to (X,, V,) is a
bijective map of (X., ¥,) onto the kernel-couple (N,_1, Ln.—1) of
d._1. We define do=0.

(v) We have diy;(x:-x;) = (daxi) -x;+ (— 1) ix;- (djxy) ; x:. € X, x,E X5
(120, j=0), which by K-linearity gives an analogous relation when
x: €U, x;€U; (120, j20).

Let

S(U, V) = Z S"(U’ V),

nz—1
where
SA(U,V)=U®vy:--QvU, (n + 2) factors, n = — 1.
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fx=u® - - Quarn &S, (U, V), n=—1, the grading in S(U, V)
is given by
n+1

degx=n+zdegu,~.

=0

We define a map 7: S,1(U, V)—>S.(U, V), (n=0) by the relation
7(x) =1Q®x, where x&S,_1(U, V). Then 7 is a graded-V-left-linear
and U-right-linear map. For
1@ur=(—1)%"y Q@ &= (—1)"y(1 Q x)

= (—1)d&°97(x),
r(au) =1 Q@ zu= (1 Q x)u = r1(x)u,

7(vx)

where x&S,_1(U, V), v is a homogeneous element of V and v & U.

We now define two differentials 9,: S,(U, V)—S,(U, V) and
3,: So(U, V)—>S.1(U, V) with the help of d and 7 exactly as in [3,
p. 166] and set d=9,+49,. We thus obtain a K-linear homogeneous
map d: S(U, V)—S(U, V) of degree —1 such that 2=0. The explicit
formulas for 9, and 9, are

ar(uo ® AR ® un+l)
=due @1 Q@ + -+ @ Uny1
+ Z (_1)5+d6800+"'+d98“"—1u0® . .. ®du'® C e Ungr

1=1
+ (_1)n+deguo+~--+degunu°® “ e e ® Up ® dun+1;

30, (o @ -+ + @ Uny1)

— E (—1)i+deguot-cHdeguig, @ « + v @ Ui @ - - - ® Uny1

=0

for n=0.
Let
(B(U’ V) = ES,,(U, V) = S(U7 V)/S—I(Uy V)'
nz0

Since S_1(U, V) is stable for 3, 9 induces a differential (again denoted
by d) in &(U, V).

3. The relative cohomology of an algebra. Let M be a A-bimodule.
The homomorphism e: (U, V)—(A, T') induces over M the structure
of a U-bimodule such that

um=0=mu, mEM, uc U, degu>0,

and
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(du)ym = 0 = m(du), mE M, uE U and degu = 1.

Let U* [resp. V*] be the opposite algebra of U [resp. V] and let
Ue=U®xk U* [resp. Ve=V®x V*] denote the enveloping algebra of
U [resp. V]. Then M can be given the structure of a left Ue-module.
We denote by Homy+(®(U, V), M) the direct sum

>~ Homye (S.(U, V), M).

nz0
It can be shown as in [3] that Homy+(®(U, V), M) is a complex and
the differential § is given by 6f=f9, where fEHomy(®(U, V), M).

If we write Ur=UQ®v - - - Qv U (n factors) with U=V, thereis a
natural isomorphism

a: Homy«(U", M) — Homy*(S.(U, V), M)

given by

(af)(uo ®---Q un+1) = uof(ih Q- Q u,.)unH,
where fEHomy*(U*, M) and uo, + + +, #p,1EU. We now have an
isomorphism

Homys (®(U, V), M) = >_ Homy+ (U*, M).
nz0
If f€Homy+(U", M), then 6f =g+h, where gEHomy+(U", M) and
h&Homy(Ur+!, M) such that

U1 ® - - - @ uy,)

= E (...1)"+dezu1+---+degu.'—1f(ul - - Qdu; ® -+ - ® un)’

f==1

By @ -+« ® tnyr) = wsf(42 ® - -+ QUnyy)
+ E (—1)itdesut--ctdegui f(3 @ « v+ @ Uip1 @ + + * @ Uny1)

f=1
+ (_1)n+l+de¢ urt -+ -+deg ""'Hf(ul Q- Q un)u”_ﬂ.
DEeFINITION. The K-module H*(Homy*(®&(U, V), M)) is called the

relative cohomology module of the K-algebra-couple (A, T') with
coefficients in the A-bimodule M and is denoted by H*(A, T', M).

4. Interpretations of H(A, T, M) and H'(A, T, M). The relative
n-cochains with coefficients in M for n=0, 1, 2, 3 are as follows (cf.
[3, p. 182]):

(i) A relative 0-cochain is an element of Homy*(V, M) and may be
identified with an element m& M for which ym =my for all y&T.

(ii) A relative 1-cochain is an element of Homy<(U,, M) and is
determined by a map x: A—M such that



1964) A RELATIVE COHOMOLOGY FOR ASSOCIATIVE ALGEBRAS 465

x(r\) = vx(), xOv) =xM)vy, MEA yvET.

(ili) A relative 2-cochain is an element of degree 2 of
Homp(U®v U, M)+Homy(U, M) and is determined by two maps

X1+ A X A—>M,
Xe: No‘—>M,

such that x1(YA1, N) =vx1(A1, N2), xaArys A2) =xa(\1y YN2), xa(A1, A2y)
=x1(A1, M)y, X2(¥70) =7x2(n0), X2(m0Y) =X2(n0)7, X2(lo) =0; Ay, A2 €A,
YET, ne& Ny, L& Lo.

(iv) A relative 3-cochain is determined by four maps
T AXAXA- M,
ma: AX No— M,
m3: No X A— M,
T N1 — M,

such that m1(yA1, A2, Ns) =ymi(A1, N2, A3), T1(Ary, Ne, \3) =m1(A\1, YAz, A3),
(A1, A2y, Ns) =My, N2y YA3), T1(As, N2y Aay) =m1(A, N2y Na)y, Ta(YN, 70)
=ym(\, 70), TNy, n0) =M\, Yn0), TN, noy) =m(N, no)y, m(\, lo)
= 0, m(yno, N\) = yms(no, N), m(ney, N) = ma(no, YN), ms(no, YN)
=m3(no, Ny, (Lo, N) =0, ma(yn) =yme(n1), ma(nry) =m(m1)y, wa(h)
=0; N\, M, A2, €A, YET, ne& No, 1€ Ny, and by, LE L.

Similarly, a relative 4-cochain is determined by eight maps satisfy-
ing a number of relations.

The calculations show that H°(A, T', M) is isomorphic to the sub-
module of the K-module M consisting of elements mE M for which
Am=m\ for every NEA. Hence H°(A, ', M) coincides with H(A, M)
defined in [3].

We shall call a K-homomorphism f: A—M a crossed I'-homomor-
phism of A into M if (i) fQAN2) =N f(A2) +f (AN for My, M €A (i) f(¥N)
=9f(\), fO\Vy) =Ff(\)vy for yET, AEA. The condition (ii) is equivalent
to f(y) =0 for y ET. We shall call a crossed I'-homomorphism f: A— M
a principal I'-homomorphism if there exists an element m& M such
that f(\) =Am —m\, AEA. Such an element m must necessarily satisfy
the relation ym =my for every yET. The calculations then show that
H'Y(A, T, M) is isomorphic to the quotient of the K-module of crossed
T'-homomorphisms of A into M by the submodule of principal I'-
homomorphisms of A into M. There is a natural homomorphism

H'(A, T, M) — H'(A, M),

where H'(A, M) is the 1-cohomology module defined in [3]. This
homomorphism is actually a monomorphism, since a principal K-
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homomorphism which is also a crossed I'-homomorphism is a principal
I'-homomorphism.

5. Interpretation of H*A, I', M). Let 8: E—A be an onto homo-
morphism of algebras with kernel M and let p: I'>E be a homomor-
phism of algebras such that (i) B8p is the identity map over I, (ii) p can
be extended to a map p: A—E for which Bp is the identity map over
A and p(YN) =p(¥)p(\), pAY) =(N\)p(y), N\EA, YyET'. We say that the
triple (E, B, p) is a relative extension of the algebra-couple (A, T')
with kernel M. We note that M is a subalgebra of E not necessarily
having an identity. Two relative extensions (E’, 8, p) and (&', §/, p’)
of the algebra-couple (A, I') with the same kernel M are said to be
equivalent if there exists an isomorphism ¢: E—E’ such that §=0'¢
and ¢p=p'.

A relative extension (E, 8, p) is said to be special if the product of
any two elements of the kernel M is zero. In this case 8 induces a
A-bimodule structure over M.

TueorEM 1. Let (A, T') be an algebra-couple and let M be a A-bimod-
ule. Then there exists a matural ome-one correspondence between the
relative cohomology module H*(A, T, M) and the set of equivalence classes
of special relative extensions of the algebra-couple (A, I') with kernel M
which induce over M the given A-bimodule structure.

The proof is similar to that of [3, Theorem 4].

6. Interpretation of H*(A, I', M). Let A be an algebra not neces-
sarily having an identity. Let (E, 8, p) be a relative extension of the
algebra-couple (A, T') with kernel 4. We do not suppose that the
product of any two elements of 4 is zero. Let M4 denote the algebra
of bimultiplications of 4 and let P4 denote the quotient algebra of
exterior bimultiplications of 4 [3, p. 197]. Since 4 is a two-sided
ideal in E, the map which assigns to every element e of E the inner
bimultiplication of E induced by e gives a homomorphism of algebras
v: E—>M,. Since A is mapped into the subalgebra of inner bimulti-
plications, v induces a homomorphism of algebras 6: A—P,. If we
compose v with the homomorphism p: '>E, we get a homomorphism
of algebras o: I'»M 4. Since p can be extended to a map p: A—E for
which Bp=ida, and s(¥\) =p(y)s(\), s(\y) =5(N)p(y) where AEA,
v&T, it follows that ¢ can be extended to a map ¢: A—M 4 for which
¢o=0, and ¢(yA) =a(v)ae(\), e(\y) =d(N)o(y) where A\EA, y&T, ¢ be-
ing the natural homomorphism of M4 onto P4. We see that a relative
extension determines two homomorphisms of algebras 6 and ¢ which
satisfy the properties just described. Both 6 and ¢ are regular homo-
morphisms [3, p. 199].
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Conversely, suppose we are given two regular homomorphisms
6: A—P, and o: "M, which are such that it is possible to define
a map ¢: A— M, having the following properties: (i) {¢=86, (ii) the
restriction of the map ¢: A—M,4 to I' is the given homomorphism
o:T— My, and (iii) a(yN) =a(y)a(\), e(\y) =a(N\)o(y) where NEA,
v¥&ET. Does there exist a relative extension (E, 3, p) of the algebra-
couple (A, I') with kernel 4 which determines the two regular homo-
morphisms 6 and o? We shall associate with the pair (4, o) an element
of the relative cohomology module H?*(A, I', C4), where C4 is the bi-
centre [3, p. 198] of 4. We shall call this element the obstruction of
(0, o) and shall denote it by £,0).

Choose a map ¢: A— M4 having the properties given above. Then
(0)=0 and ¢(1) =1, the identity bimultiplication. We note that the
quotient algebra 4/C,4 is isomorphic to the algebra of inner bimulti-
plications of A, which is the kernel of the natural homomorphism
{: M,—P,4. We identify them and define two maps

X1: AX A— A/Ca,
X2t No — A/Cy,
such that
X1(A, A2) = oA \2) — a(A)a(A2),
X2(no) = z? kio(Ni),

where )\1, >\2, )\iEA, No= Z,’ k,‘()\.'), Z{ ki)\,=0. Now A4 and A/CA
are M 4-bimodules and the natural map u: A—A4/C4 which associates
with every element of 4 the inner bimultiplication of 4 induced by
it, is a homomorphism of M 4-bimodules. Thanks to the homomor-
phism ¢: > M, we can consider 4 and 4/C,4 as I'-bimodules and u
as a homomorphism of I'-bimodules. We can now define two maps
X1: AX A— A
x2: No — 4
such that px;= X1, uxe=x2. It is easy to verify that the maps x: and
X2 satisfy all the six relations which the two maps x; and xs, which
determine a relative 2-cochain, satisfy although here 4 is not a
A-bimodule. We now define four maps
m: AX AX A—Cy,
me: A X No il CA,
T3 No X A— CA,

T4 N1 ——>CA,
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exactly as in [3, p. 200] in terms of x; and x.. It is easy to verify
that these four maps satisfy all the relations necessary to determine
a relative 3-cochain with coefficients in the A-bimodule C4. It can be
shown as in [3, Theorem 5] that this relative 3-cochain is a relative
3-cocycle and that it determines an element of H3(A, I', C4) which is
independent of the choice of the map ¢: A—M,4. This element is
called the obstruction of (@, ). We are now in a position to answer
the question raised at the beginning of this section.

THEOREM 2. The pair of regular homomorphisms (0, o) is induced by
a relative extension if and only if the obstruction £p..) =0.

The proof is similar to that of [3, Theorem 6].
Finally, the K-module H3(A, T', M) can be interpreted in terms of
the pairs of regular homomorphisms (8, o).

THEOREM 3. Let (A, T') be an algebra-couple and let M be a A-bi-
module. Let f be a relative 3-cocycle of (A, ') with coefficients in M.
Then there exist an algebra A having M as its bicentre and two regular
homomorphisms 0: A—P 4 and o: T— M, satisfying the conditions (i),
(ii), and (iii) described above such that 0 induces over M the given A-
bimodule structure and that f is the obstruction of the pair (0, 7).

The proof is similar to that of [3, Theorem 8], but one has to start
with the algebra

L=U+UsQvUo+ - - F+UeQv- - QvUo+ -

instead of the algebra L in [3, p. 205], in which the tensor products
were taken over K.

REMARK. It would be interesting to investigate whether the relative
cohomology proposed in this paper reduces to the absolute cohomol-
ogy given in [3] when we take for I' the image of K in A under the
natural homomorphism K—A which maps the identity of K into the
identity of A. If we denote the image of K in A by K itself, it is evi-
dent that an absolute cochain of A [3, p. 182] is not a relative co-
chain of the algebra-couple (A, K), since the maps which determirte
it need not satisfy any relations of the type described in §4. Yet the
interpretationsof H°(A, T, M)and H'(A, T, M)show that H°(A, K, M)
~HA, M) and H'(A, K, M) =~ H'(A, M). Since the relative cohomol-
ogy has been described in terms of the canonically constructed alge-
bra-resolutions U and V of A and T respectively, the first task, as
already indicated in the Introduction, is to construct a category of
objects (U, V, A, T, €) (cf. [3, Chapter 11]) and to prove theorems
analogous to [3, Theorems 1, 2]. The second task will be to see
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whether we can take V=T, when I' is K-projective. If this is found
possible, we shall have shown that the relative cohomology does re-
duce to the absolute cohomology when we take I'=K.
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In what follows all small latin letters denote non-negative integers,
while N and N, are j-partite numbers, i.e. vectors or row-matrices of
j dimensions whose components are non-negative integers. In par-
ticular, N= (n1, ns, - - -, n;). We write g«x(N) for the number of par-
titions of N into just k parts and 7:(V) for the number of partitions
of N into just k different parts.

Let m=w(k) be a partition of k into k(1) parts 1, k(2) parts 2 and
so on, so that k= Zm mh(m). We write

H(z) = IT {h(m)imrem}—

m

where, as usual, 0!=1, and D(w, N) for the number of solutions of

h(m)

(1) N = E Z M N sy

m  a=1

where the order of the N,, is relevant. Clearly

i
2) D(r, N) = II D(x, n).

t=1
Again, for | X| <1,
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