A THEOREM ON MAXIMUM MODULUS!
ANATOLE BECK

Introduction. If D is a domain in the plane of complex numbers,
then every analytic function achieves its maximum modulus only at
the boundary. We phrase this by asserting that if f is analytic in D,
and f is not constant, and if x&D has the property that

lim sup |f| =5111)P Ifl,

then x&8(D), the boundary of D. If x is the only point for which the
above identity holds, then x is the peak point for f in D. If x is the
peak point for a bounded analytic function in D, then x is @ peak point
of D. We are interested in knowing which boundary points of D
can be peak points.

W. Rudin [1] defines a boundary point x of a domain D as a re-
movable boundary point if every function bounded and analytic in D
can be continued at x. All boundary points which are not removable
are essential.

We shall show that a point is a peak point of D if and only if it is
an essential boundary point.

LeMMA 1. If D is a simply connected domain and xS 8(D) is linearly
accessible from the interior, then there is a schlicht mapping f of D into
the open unit disc such that lim,.,f(z)=1 and lim sup; | f I <1 4
§€o(D), E#x.

ProoF. Let (x, x+a] be a line segment contained in D. Then the
function

fG) = g2 + 4z — )3,

where g(2) =2z41/z, Iz[ <1, is a schlicht function with the properties:
1. lim... f(z)=1,
2. |x—y| >¢, yED=1—|f(3)| >n=n(e, D)>0,
as we shall show. Let x;—x, ;€D and |y—x| > e If we examine the
mapping z—f1(z) =a~1(z—x), it is a linear mapping taking [x, x+a]
onto [0, 1]. a~(x;—x)—0, Ifl(y) —0[ >e/|a|. Since D, and thus
f1(D), is simply connected, we can apply a square root, with (41)'/2
‘=41, and get fo(2) = (f1(2))'72, (e~ (x;—x))}2—0, and
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150 =0l = 1G] = (116) - o> (57) =
We note that each point of (0, 1] is an interior point of f,(D), so that
each point of [—1, 0) is an exterior point of f,(D). Thus, Cl [f.(D)]
meets [—1, 0] only at 0. Set ;y=m1(¢, D) =d([—1, 0], fo(D) — N(0, &))
>0. Then d(f2(y), [—1, 0]) 7. Setting fi(z) =2+4(f2(2)), we have
fa(x)—2 and d(fs(y), [—2, 2]) =4n. We now observe that for our
function g, g(2)—2 iff z—1 and |z| 1—e=d(g(2), [—2, 2])>e2.2
Thus f(x)) = g7 (fa(x:)) = g7(2 + 4(a!(x; — x))?) — 1 and |f(y)|
=g (f)| <1=(4m)"? so that 1—|f(y)| > (4m)"2=n(e, D)>0,
as promised.

LEMMA 2. The set of peak points of any domain is closed.

PRrOOF. Let a; be the peak point of f; in D, 1=1, 2, - - -, and let
a;—a. We assume that supp|fi] =1. Let N, be a neighborhood of a;,
1=1, 2, - - -, with diam(&V;)—0 and pairwise disjoint. Since a; is a
peak point of f;, f; is bounded away from 1 off N, so that for an ap-
propriate integer m;, we have

sup | fi'(@)| <4,
z€D—N;

Set gi(z) =f"(2). We will now generate (inductively) a sequence {b;}
such that

1. |b:] =2,

2. D, b.giis bounded and analytic in D,

3. supw, I >, bigil =2—1/n.

We take b;=1. Given by, - - -, b,_;, we find b, as follows:

Set ha(§) =supw, |big1+ + -+ +busgart+E-ga], |£] £2. Then £,(0)
=supy, | g1+ - ¢ +baoigaa| < DTt 2-471<2/3. We now choose
a point ¥, such that g.(y.) >1—(1/2%), and set

) biga(yn) + - - - + bn—1gn-1(yn) g(3n)
gn(¥n) bigi(yn) + -+ + burgna(ya) |

Cn

Then
hn(cn) g l blgl(yn) + MR + bn—lgn—l(yn) + Cngn(yn) I

v

1
| c,,g,.(y,.)l >2—-—,
n

2 This is because the image under g=! of the circle x2432=¢? is the ellipse (42/a?)
+@?/b?) =1, where a=c+1/c, b=c—1/c. If c=1—¢ then the image of x2+32 < (1 —¢)?
is the exterior of the indicated ellipse. The closest approach of this set to the line
[—2, 2] is at the vertex, where the distance is /(1 —¢).
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since Z?: L b.gi(y.) and c.g.(y.) have the same argument. Since
ha(0) <2/3<2—1/n<h,(c,), there is a point b, in the disc lzl <2
such that %,(b,)=2—1/n. For 2&N,, we then have

2082 | 2| 2 bgi(®) |+ 2 | 6] | g:a) |
=1 =1 t=n+1
1 i 1 2
<2——4 > 24 =2— — 4 —4n,
n i=n+1 n 3
Similarly,
ol 1 2
sup | 2 bigi(z) | > 2 — — — =47,
Z2ENL | =1 n 3

For 2&D—U>, N;, we have

> bigiz) | < D 247 = 2/3.

=1 =1

Thus | > bigi(z)| <2 for all 2ED. If K is a compact subset of D,
then K meets only finitely many N, so that the series converges uni-
formly and absolutely on K. Thus f(z) = D_>, b.igi(2) is analytic. Fi-
nally, it is clear that I f(z), is close to 2 only inside N;, for large 17,
that is, only around a.

LeMMA 3. If D is any domain, the boundary points linearly accessible
from the interior are dense in 6(D).

Proor. Let x€4d(D), ¢e>0. Let y&ED, Iy—xl <e. Let x; be the
point of 8(D)N\[x, y] lying nearest to y. Then ]x—x1| <e and x; is
linearly accessible.

THEOREM 1. If D is simply connected, and its boundary consists of
more than one point, then every boundary point is a peak point.

Proor. Direct consequence of Lemmas 1, 2, 3.

LeEMMA 4. If x€6(D) and the component of x in D’, K (x) # {x}, then
x s a peak point of D.

Proor. Let yEK(x), y=#x. Let K, be a sub-continuum of K(x),
containing ¥ but not containing x. There is a conformal mapping ¢
of K{ onto the open unit disc, and ¢ is a homeomorphism around x.
Then ¢(K(x)") is a simply connected domain, and each linearly ac-
cessible point of §(¢(K(x)’)) is a peak point of the kind described in
Lemma 1. If we now restrict our functions to ¢(D), each of these
points is still a peak point, though the point may no longer be linearly
accessible. Now, by Lemma 2, x is a peak point.



348 ANATOLE BECK [June

LeMMA 5. If K(D) denotes the closure of the union of those com-
ponents of §(D) which are not single points, then every point in K (D)
is a peak point of D.

ProorF. Clear from Lemmas 4 and 2.

DEFINITION. A set S is a Painlevé null set (called a p-null set) if the
algebra of bounded analytic functions on S’ consists of the constants
alone.

DEFINITION. A point x&8(D) is called a p-essential boundary point
if for each €>0, N(x, ¢)M\d(D) is not a p-null set.

LEMMA 6. Let x&86(D) and xEK(D). Then if x is a p-essential
boundary point, x is a peak point of D.

PRroOF. Let N be a neighborhood of x in which §(D) is totally dis-
connected. Since the p-essential boundary points form a perfect set,
let x;,—x be a sequence of p-essential boundary points. Let N; be a
sequence of neighborhoods with N;CN, x;&EN; no two N; intersect-
ing, and diam(N;)—0. Let M, be open with x;&EM;CM;CN; for
each 4. Then K;=M;N\3(D) is not a p-null set and thus we can find
fisuch that f; is analytic on K/ (including «) and f; is not constant.
We can assume that supx! |f| =1. Then supx’! |fi| <1, so we can
choose a sequence of integers m; so that

™ <4
P |7

Set gi(2) =f"(2). Since D’ is nowhere dense in N, supp |g,~ =1, and
supp_w, | g:| <4~

Using the same technique as in Lemma 2, we choose b, so that

1. |b.] =2,

2. supw, | Qi1 bigs| =2—1/n,

3. f(z)= )_i=, bigi(2) is bounded and analytic in D.
Furthermore, we deduce that

1 2 1 2
2————4"<sup [f] <2—=—+4 —4m
n 3 Na n 3

and supp_u; v, |f] <2/3. Thus, f has a peak at x.

THEOREM 2. If x is a p-essential boundary point, then x is a peak
point.

Proor. If €K (D), thisis true by Lemma 5; otherwise by Lemma 6.

THEOREM 3. x is a peak point iff x is an essential boundary point.
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ProoF. By a theorem of W. Rudin [1], x is an essential boundary
point iff x is a p-essential boundary point. From the remarks above,
every x €K (D) is a peak point of a function which has no limit at x.
Thus, no point of K(D) is removable. If x€6(D)—K (D) and x is
removable, then each f is continuable there. Since 8(D) is nowhere
dense around «x, this extension does not change the maximum modulus
nor the lim sup at x. By the maximum modulus theorem, f(x) is not
the maximum. By continuity, x is not a peak for any f.

It would be interesting to know when x is the peak point of a
bounded analytic function f which has a limit at x, or whose modulus
has a limit at x. It is clear from previous remarks that every essential
boundary point is the peak point of a function which does not have
these limits. This question is open.

REFERENCE

1. W. Rudin, Some theorems on bounded analytic functions, Trans. Amer. Math.
Soc. 78 (1955), 333-342.

UNIVERSITY OF WISCONSIN



