ON THE SEQUENCE OF FOURIER COEFFICIENTS

P. L. SHARMA

1. Let $f(x)$ be a function which is integrable in the sense of Lebesgue over the interval $(-\pi, \pi)$ and is defined outside this by periodicity. Let the Fourier series of $f(x)$ be

$$
\begin{equation*}
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\frac{1}{2} a_{0}+\sum_{1}^{\infty} A_{n}(x), \tag{1.1}
\end{equation*}
$$

then the conjugates series of (1.1) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{1}^{\infty} B_{n}(x) \tag{1.2}
\end{equation*}
$$

Mohanty and Nanda [2] have proved that if

$$
\begin{equation*}
f(x+t)-f(x-t)-l=\psi(t)=o\left\{\left(\log \frac{1}{t}\right)^{-1}\right\}, \quad t \rightarrow 0 \tag{1.3}
\end{equation*}
$$

and a_{n} and b_{n} are $O\left(n^{-r}\right), 0<r<1$, then the sequence $\left\{n B_{n}(x)\right\}$ is summable ($C, 1$) to the value l / π.

Definition. The series $\sum a_{n}$ with the sequence of partial sums $\left\{S_{n}\right\}$ is said to be summable by a regular row-infinite matrix ${ }^{1}$ method of summation or summable A if

$$
\begin{equation*}
\sigma=\sum_{n=1}^{\infty} a_{n, m} s_{n} \tag{1.4}
\end{equation*}
$$

exists and is finite.
We obtain another method of summation viz., $A \cdot(C, 1)$ by superimposing the method A on the Cesàro mean of order one.

The object of this paper is to prove the following theorem.
Theorem. If

$$
\begin{equation*}
\psi(t)=o\left\{\left(\log \frac{1}{t}\right)^{-1}\right\}, \quad \text { as } t \rightarrow 0 \tag{1.5}
\end{equation*}
$$

and for some r with $0<r<1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum n^{r}\left|a_{n, m}-a_{n+1, m}\right|=0 \tag{1.6}
\end{equation*}
$$

Received by the editors December 24, 1962.
${ }^{1}$ Here $A=\left(a_{n, m}\right)$, where $\sum_{n \rightarrow \infty}\left|a_{n, m}\right|<\infty, m=1,2,3, \cdots$.
then the sequence $\left\{n B_{n}(x)\right\}$ is summable $A \cdot(C, 1)$ to the sum l / π.
It may be noted here that the regular matrices which satisfy the condition (1.6) with $r=0$ are called strongly regular [1].
2. Proof of the theorem. If we denote the ($C, 1$)-transform of the sequence $\left\{n B_{n}(x)\right\}$ by τ_{n}, we have after Mohanty and Nanda [2],

$$
\begin{equation*}
\tau_{n}-\frac{l}{\pi}=\frac{1}{\pi} \int_{0}^{1} \psi(t)\left[\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t}\right] d t+o(1) \tag{2.1}
\end{equation*}
$$

by Riemann-Lebesgue theorem.
On account of the regularity of the A method of summation, we need only to prove that

$$
\begin{equation*}
I=\frac{1}{\pi} \sum_{\lim _{n+\infty}} a_{n, m} \int_{0}^{1} \psi(t) g_{n}(t) d t=o(1) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}(t)=\frac{\sin n t}{n t^{2}}-\frac{\cos n t}{t} . \tag{2.3}
\end{equation*}
$$

We require the following inequalities which can be easily obtained by expanding sine and cosine in powers of n and t :

$$
\begin{equation*}
g_{n}(t)=O\left(n^{2} t\right) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{n}(t)=O\left(t^{-1}\right) \tag{2.5}
\end{equation*}
$$

It is also known [3] that

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\sin \nu}{\nu}=O(1) \tag{2.6}
\end{equation*}
$$

Now

$$
\begin{align*}
|I| & \leqq\left|\frac{1}{\pi} \sum a_{n, m}\left\{\int_{0}^{n^{-1}}+\int_{n^{-1}}^{n^{-r}}+\int_{n^{-r}}^{1}\right\} g_{n}(t) \psi(t) d t\right| \tag{2.7}\\
& =\left|\frac{1}{\pi} \sum a_{n, m}(P+Q+R)\right| .
\end{align*}
$$

Using (2.4), we get

$$
|P|=O\left(n^{2}\right) \int_{0}^{n^{-1}} o(1) O(t) d t=o(1)
$$

Also, with (1.5) and (2.5), we write

$$
\begin{aligned}
|Q| & =o\left(\int_{n^{-1}}^{n^{-r}} \frac{d t}{t \log 1 / t}\right) \\
& =o(1) .
\end{aligned}
$$

Thus the first two terms in (2.7) can be made as small as we please by choosing n sufficiently large.

With the help of (2.3) and (2.5), we write

$$
\begin{aligned}
M_{\nu}(t) & =g_{1}(t)+\cdots+g_{\nu}(t)=\frac{1}{t^{2}} \sum_{\nu=1}^{n} \frac{\sin \nu t}{\nu}-\frac{1}{t} \sum_{\nu=1}^{n} \cos \nu t \\
& =O\left(\frac{1}{t^{2}}\right)-\frac{1}{t} D_{\nu}(t)=O\left(\frac{1}{t^{2}}\right),
\end{aligned}
$$

where $D_{\boldsymbol{\nu}}(t)$ is the Dirichlet Kernel for convergence of Fourier series, and it is known that $D_{\nu}(t)=O(1 / t)$. It is easy to see that $\sum\left|a_{n, m}\right|<\infty$ and $\sum n^{r}\left|a_{n, m}-a_{n+1, m}\right|<\infty$ imply that $n^{r} a_{n, m} \rightarrow 0$, hence using Abel transformation we write,

$$
\begin{aligned}
\left|\frac{1}{\pi} \sum_{1}^{n} a_{n, m} R\right|= & \left|\frac{1}{\pi} \sum_{1}^{n} a_{n, m} \int_{n^{-r}}^{1} \psi(t)\left[M_{n}(t)-M_{n-1}(t)\right] d t\right| \\
& \leqq\left|\frac{1}{\pi} \sum_{1}^{n-1}\left(a_{n, m}-a_{n+1, m}\right) \int_{n^{-}}^{1} \psi(t) M_{n}(t) d t\right| \\
& +\left|\frac{1}{\pi} \sum_{2}^{n} a_{n, m} \int_{n^{r}}^{(n-1)^{\rightarrow}} \psi(t) M_{n}(t) d t\right|+o(1), \\
= & L_{1}+L_{2}, \text { say. } \\
L_{1}= & O\left\{\sum_{1}^{n-1}\left|a_{n, m}-a_{n+1, m}\right| \int_{n^{-r}}^{1} \frac{1}{t^{2}} d t\right\} \\
= & O\left\{\sum_{1}^{n-1}\left(n^{-r}-1\right)\left|a_{n, m}-a_{n+1, m}\right|\right\} \\
= & o(1), \text { by }(1.6) . \\
L_{2}= & O\left\{\sum_{2}^{n}\left|a_{n, m}\right| \int_{n^{-r}}^{(n-1)^{-r}} \frac{1}{t^{2}} d t\right\} \\
= & O\left\{\sum_{2}^{n}\left|a_{n, m}\right|\left[(n-1)^{r}-n^{r}\right]\right\} \\
= & o(1), \quad \text { for } 0<r<1,
\end{aligned}
$$

since $\left(a_{n, k}\right)$ is a regular row-infinite matrix and $\left\{(n-1)^{r}-n^{r}\right\}$ is a null sequence.

This completes the proof of the theorem.
The author is much indebted to the referee for his many valuable suggestions.

References

1. G. G. Lorentz, Direct theorems on methods of summability, Canad. J. Math. 1 (1949), 305-319.
2. R. Mohanty and M. Nanda, On the behaviour of Fourier coefficients, Proc. Amer. Math. Soc. 5 (1954), 79-84.
3. E. C. Titchmarsh, Theory of functions, p. 440.

University of Saugar, Saugar (M.P.), India

