
A NOTE ON THE BOCKSTEIN OPERATOR

HANS SAMELSON1

1. Introduction. The Stiefel-Whitney classes w\, • ■ ■ , wn of an n-

plane bundle £ over a space X are certain well-defined elements of

H*(X; Z2) (singular cohomology). For the effect of the Steenrod

squares on them one has the Wu formulae Sqiwj= 23ô (1~i\'~1)wi-tWj+l

[2 ]. In particular, since Sql=ß2 (the Bockstein operator for the coeffi-

cient sequence 0—>Z2—>Z4—->Z2—>0) one has

(I) ß2w2i = w2i+i -f- W\W2i       (here w¡ = 0 for j > n).

The classes wn+i, for 2i'+l ^n, are Zî-reductions of classes that we

shall write as w2i+i, defined over a local coefficient system Z whose

group is Z (the integers), the local system being determined by the

orientation of the fiber, [l, p. 195] (incidentally, this also holds for

wn, in case of even n). With ß denoting the Bockstein operator for the

sequence 0—>Z—»Z—>Z2—>0, one has then, according to [l], the

formulae

ßw2i = Wii+i        (again w¡ = 0 for/ > n),

and consequently, writing p2 lor reduction mod 2 and ß2 lor p2 o ß,

(II) ¡32w2i = W2M-1,       for 0 < 2t S »;

for i = 0 the situation is a little different, cf. §4 below.

Our aim is to connect the two formulae (I) and (II), by means of

the theorem in §3.

2. Pairing of coefficient sequences. Let 0—>A'—*A—>.<4"—>0, 0—>23'

—»25—>23"—>0 be two exact sequences of coefficient groups (or local

systems for cohomology in A) ; let a, ß be the corresponding Bockstein

maps. There is the usual exact sequence 0—>D—>A ®B-+A" ®B"~>0,

where D is the natural image of A'®B@A®B' in A®B. We can

"divide" by the natural image of A' ®B' in A ®B, and get the exact

sequence (defining C as image of D)

(1) 0->C-+A ® B/i(A' ® B')-+A" ® 23"->-0,

which we call the product sequence; let 7 be the associated Bockstein
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operator. Let k: A'®B'-*A'®B®A ®B' be defined by k(a'®b')

= (a'®b', -a'®b'). One verifies that the maps A-^>A", B-+B" give

rise to the following commutative diagram:

X                                                      u
A'®B®A®B'—>(A'®B®A®B')/k(A'®B')->A'®B"®A"®B'

v

D->C

Let now uEH'(X; A"), vEH'(X; B") be given. We regard

au-v + (-l)*u-ßv as lying in H'+'+^X; A'®B"®A"®B'), and u-v

as lying in Hs+t(X; A" ®B"). We write X, resp. X*, for the coefficient

maps, defined by X, on cochains, resp. cohomology.

Proposition, (a) y(u-v) = v*(au-v + (— l)'u-ßv); (b) au-v

+ ( 1 — ) "u • ßv E im /t*.

Proof. Take cochains x, y representing u, v; "pull back" to co-

chains x, y with coefficients in A, B. Then d(x-y), with coefficients in

A ®B, pulls back to D; similarly dx-y-\-( — V)"x-dy has coefficients in

A' ®B ®A ®B' ; their t*-, resp. r* o cr*-images are equal and represent

y (u-v). One checks that ~K*(dx-y-\-( — l)ax-dy) is a cocycle (the two

A'®B' have become equal). Applying /it* to its cohomology class, we

get part (b) of the proposition, and continuing with v* we get part (a).

3. The twisted Bockstein operator. Suppose X is pathwise con-

nected and has a base point. Let p be any prime, and let w be an ele-

ment, 9^0, of Hl(X; Zp). By the universal coefficient theorem, w de-

fines and is in fact equivalent to a homomorphism of HX(X) (over Z)

onto Zp. Composing with the Hurewicz map we get a homomorphism,

w, of 7Ti(X) onto Zp. Now the group Zpi has an automorphism of order

p, sending 1 into p + 1, that leaves the subgroup Zp and the corre-

sponding quotient group elementwise fixed. We regard this as an

action of Zp on the sequence 0—>ZP—»Zp2—>ZP—>0. Composing with w,

we get a left action of iri(X) on this sequence, and thus a sequence

0—*Zp—»Zp*—>Zp—>0 of local systems of coefficients in X, where the

end terms are constant and the middle term has group Zps. Write ß"

for the Bockstein operator of this sequence ; also write ßp for the Bock-

stein map of the constant sequence 0—»Zp—>Zpî—>Zp—»0. For w = 0

define ß° = ßp.

Theorem. For any vEH*(X; ZP) we have

0"M = &>(») + w-v.
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Proof. The case w = 0 is trivial. Now let us take w?±0. First take

o = l, the unit of H*(X; Zp). Here the result to be proved is ßw(l) =w,

since ßp(l)=0. It is sufficient to consider 1-simplices with both end

points at the base point (use the 1st Eilenberg subcomplex of the

singular complex). But then the relation to be proved is practically a

tautology; note (p + iy=p-i-\-l (mod p2).

Second, we apply the considerations of §2 to the sequence 0—>ZP

—->Zp2—»Zp—»0 above and the constant sequence 0—=>ZP—>Zp¡—*ZV—»0.

The general formulae simplify a good deal: i(A'®B') is 0, so that

D=C; k(A'®B') is also 0; the product sequence is isomorphic to the

first given sequence; so that y = a(=ßw); both terms .4'®23" and

A"®B' are of the form ZP®ZP^ZP and map onto C«ZP under v.

Part (a) of the proposition can then be interpreted as saying

j8"(w») = jS-WT + (-l)'u-ßpv,

where all coefficients are Zp and the product is the usual U-product

over Zp.

We now take u = \ and get ßw(v)=ß"(\-v)=ßw(l)-v+ßpV = w-v

-\-ßPv, thus proving the theorem.

As an example, with p = 2, take infinite real projective space with

H*(PR'°; Z2) —Z2[w]. One finds thatß" vanishes on the odd powers of

w, and ß2 on the even powers.

We now apply our theorem to the situation of §1, with p = 2. We

have of course ß2 = ßWl, and so (I) and (II) are equivalent by the

theorem (note + = — here).

4. The case i = 0. For the Stiefel-Whitney classes in dimensions 0

and 1, Steenrod has the formula

(Io) |81 = <»i

where one has to interpret 1 as the integral unit class, and one uses

for the construction of ß ¿he sequence 0—>Z—>(B—>Z—»0, where the

group of (B is Z®Z, and tt\(X) acts by interchanging the two terms.

Reducing mod 2 we get the sequence 0—»Zs—>TJ—>Zt—*0, where the

group of V is Z2@Z2, and the relation

(Ho) piO/9f(l)  = wlf

where now 1 is over Z2. To "explain" this we consider the situation

analogous to that of §3: W\ ¿¿0, in Hr(X; Z2) ; iri(A) acting on Z2@Z-¡

"according to w" ; ß' the corresponding Bockstein operator. One veri-

fies as in §3 again ß'(l) =w; and p2 o j§in (II0) is just the/3' for w = wx.
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