A NOTE ON THE BOCKSTEIN OPERATOR

HANS SAMELSON1

1. Introduction. The Stiefel-Whitney classes w_1, \dots, w_n of an n-plane bundle ξ over a space X are certain well-defined elements of $H^*(X; Z_2)$ (singular cohomology). For the effect of the Steenrod squares on them one has the Wu formulae $Sq^iw_j = \sum_{0}^{t} \binom{j-i+l-1}{t} w_{i-t}w_{j+t}$ [2]. In particular, since $Sq^1 = \beta_2$ (the Bockstein operator for the coefficient sequence $0 \rightarrow Z_2 \rightarrow Z_4 \rightarrow Z_2 \rightarrow 0$) one has

(I)
$$\beta_2 w_{2i} = w_{2i+1} + w_1 w_{2i}$$
 (here $w_j = 0$ for $j > n$).

The classes w_{2i+1} , for $2i+1 \le n$, are Z_2 -reductions of classes that we shall write as \bar{w}_{2i+1} , defined over a local coefficient system Z whose group is Z (the integers), the local system being determined by the orientation of the fiber, [1, p. 195] (incidentally, this also holds for w_n , in case of even n). With $\tilde{\beta}$ denoting the Bockstein operator for the sequence $0 \to Z \to Z \to Z_2 \to 0$, one has then, according to [1], the formulae

$$\tilde{\beta}w_{2i} = \tilde{w}_{2i+1}$$
 (again $\tilde{w}_j = 0$ for $j > n$),

and consequently, writing ρ_2 for reduction mod 2 and $\tilde{\beta}_2$ for $\rho_2 \circ \tilde{\beta}$,

(II)
$$\tilde{\beta}_2 w_{2i} = w_{2i+1}$$
, for $0 < 2i \leq n$;

for i=0 the situation is a little different, cf. §4 below.

Our aim is to connect the two formulae (I) and (II), by means of the theorem in §3.

2. Pairing of coefficient sequences. Let $0 \rightarrow A' \rightarrow A \rightarrow A'' \rightarrow 0$, $0 \rightarrow B' \rightarrow B \rightarrow B'' \rightarrow 0$ be two exact sequences of coefficient groups (or local systems for cohomology in X); let α , β be the corresponding Bockstein maps. There is the usual exact sequence $0 \rightarrow D \rightarrow A \otimes B \rightarrow A'' \otimes B'' \rightarrow 0$, where D is the natural image of $A' \otimes B \oplus A \otimes B'$ in $A \otimes B$. We can "divide" by the natural image of $A' \otimes B'$ in $A \otimes B$, and get the exact sequence (defining C as image of D)

$$(1) 0 \to C \to A \otimes B/i(A' \otimes B') \to A'' \otimes B'' \to 0,$$

which we call the product sequence; let γ be the associated Bockstein

Presented to the Society, November 19, 1963 under the title On Poincaré duality; received by the editors November 12, 1962 and, in revised form, January 31, 1963.

¹ Prepared with support from National Science Foundation Grant G-20301.

operator. Let $k: A' \otimes B' \to A' \otimes B \oplus A \otimes B'$ be defined by $k(a' \otimes b') = (a' \otimes b', -a' \otimes b')$. One verifies that the maps $A \to A''$, $B \to B''$ give rise to the following commutative diagram:

Let now $u \in H^s(X; A'')$, $v \in H^t(X; B'')$ be given. We regard $\alpha u \cdot v + (-1)^s u \cdot \beta v$ as lying in $H^{s+t+1}(X; A' \otimes B'' \oplus A'' \otimes B')$, and $u \cdot v$ as lying in $H^{s+t}(X; A'' \otimes B'')$. We write λ , resp. λ_* , for the coefficient maps, defined by λ , on cochains, resp. cohomology.

PROPOSITION. (a) $\gamma(u \cdot v) = \nu_*(\alpha u \cdot v + (-1)^* u \cdot \beta v);$ (b) $\alpha u \cdot v + (1-)^* u \cdot \beta v \in \text{im } \mu_*.$

PROOF. Take cochains x, y representing u, v; "pull back" to cochains \bar{x} , \bar{y} with coefficients in A, B. Then $d(\bar{x} \cdot \bar{y})$, with coefficients in $A \otimes B$, pulls back to D; similarly $d\bar{x} \cdot \bar{y} + (-1)^* \bar{x} \cdot d\bar{y}$ has coefficients in $A' \otimes B \oplus A \otimes B'$; their τ_* -, resp. τ_* o σ_* -images are equal and represent $\gamma(u \cdot v)$. One checks that $\lambda_*(d\bar{x} \cdot \bar{y} + (-1)^* \bar{x} \cdot d\bar{y})$ is a cocycle (the two $A' \otimes B'$ have become equal). Applying μ_* to its cohomology class, we get part (b) of the proposition, and continuing with ν_* we get part (a).

3. The twisted Bockstein operator. Suppose X is pathwise connected and has a base point. Let p be any prime, and let w be an element, $\neq 0$, of $H^1(X; Z_p)$. By the universal coefficient theorem, w defines and is in fact equivalent to a homomorphism of $H_1(X)$ (over Z) onto Z_p . Composing with the Hurewicz map we get a homomorphism, w, of $\pi_1(X)$ onto Z_p . Now the group Z_p has an automorphism of order p, sending 1 into p+1, that leaves the subgroup Z_p and the corresponding quotient group elementwise fixed. We regard this as an action of Z_p on the sequence $0 \rightarrow Z_p \rightarrow Z_{p^2} \rightarrow Z_p \rightarrow 0$. Composing with w, we get a left action of $\pi_1(X)$ on this sequence, and thus a sequence $0 \rightarrow Z_p \rightarrow Z_{p^2} \rightarrow Z_p \rightarrow 0$ of local systems of coefficients in X, where the end terms are constant and the middle term has group Z_p . Write β^w for the Bockstein operator of this sequence; also write β_p for the Bockstein map of the constant sequence $0 \rightarrow Z_p \rightarrow Z_{p^2} \rightarrow Z_p \rightarrow 0$. For w=0 define $\beta^0 = \beta_p$.

THEOREM. For any
$$v \in H^*(X; Z_p)$$
 we have $\beta^w(v) = \beta_p(v) + w \cdot v$.

PROOF. The case w=0 is trivial. Now let us take $w\neq 0$. First take v=1, the unit of $H^*(X; Z_p)$. Here the result to be proved is $\beta^w(1) = w$, since $\beta_p(1) = 0$. It is sufficient to consider 1-simplices with both end points at the base point (use the 1st Eilenberg subcomplex of the singular complex). But then the relation to be proved is practically a tautology; note $(p+1)^i \equiv p \cdot i + 1 \pmod{p^2}$.

Second, we apply the considerations of §2 to the sequence $0 \rightarrow Z_p \rightarrow Z_{p^2} \rightarrow Z_p \rightarrow 0$ above and the constant sequence $0 \rightarrow Z_p \rightarrow Z_{p^2} \rightarrow Z_p \rightarrow 0$. The general formulae simplify a good deal: $i(A' \otimes B')$ is 0, so that D = C; $k(A' \otimes B')$ is also 0; the product sequence is isomorphic to the first given sequence; so that $\gamma = \alpha (=\beta^w)$; both terms $A' \otimes B''$ and $A'' \otimes B'$ are of the form $Z_p \otimes Z_p \approx Z_p$ and map onto $C \approx Z_p$ under ν . Part (a) of the proposition can then be interpreted as saying

$$\beta^w(u\cdot v) = \beta^w u\cdot v + (-1)^s u\cdot \beta_p v,$$

where all coefficients are Z_p and the product is the usual U-product over Z_p .

We now take u=1 and get $\beta^w(v) = \beta^w(1 \cdot v) = \beta^w(1) \cdot v + \beta_p v = w \cdot v + \beta_p v$, thus proving the theorem.

As an example, with p=2, take infinite real projective space with $H^*(PR^{\infty}; \mathbb{Z}_2) = \mathbb{Z}_2[w]$. One finds that β^w vanishes on the odd powers of w, and β_2 on the even powers.

We now apply our theorem to the situation of §1, with p=2. We have of course $\tilde{\beta}_2 = \beta^{w_1}$, and so (I) and (II) are equivalent by the theorem (note +=- here).

4. The case i=0. For the Stiefel-Whitney classes in dimensions 0 and 1, Steenrod has the formula

$$\tilde{\beta}1 = \tilde{w}_1$$

where one has to interpret 1 as the integral unit class, and one uses for the construction of $\tilde{\beta}$ the sequence $0 \rightarrow Z \rightarrow \mathbb{G} \rightarrow Z \rightarrow 0$, where the group of \mathbb{G} is $Z \oplus Z$, and $\pi_1(X)$ acts by interchanging the two terms. Reducing mod 2 we get the sequence $0 \rightarrow Z_2 \rightarrow \mathbb{U} \rightarrow Z_2 \rightarrow 0$, where the group of \mathbb{U} is $Z_2 \oplus Z_2$, and the relation

$$(II_0) \rho_2 \circ \widetilde{\beta}(1) = w_1,$$

where now 1 is over Z_2 . To "explain" this we consider the situation analogous to that of §3: $w_1 \neq 0$, in $H^1(X; Z_2)$; $\pi_1(X)$ acting on $Z_2 \oplus Z_2$ "according to w"; β ' the corresponding Bockstein operator. One verifies as in §3 again β '(1) = w; and $\rho_2 \circ \tilde{\beta}$ in (II₀) is just the β ' for $w = w_1$.

ACKNOWLEDGMENT. The author's original version of β^w was limited to the case p=2. The referee suggested the extension to arbitrary p; he also suggested to expand the original proof of the theorem to the proposition on pairing in §2.

BIBLIOGRAPHY

- 1. N. E. Steenrod, The topology of fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951.
- 2. W. T. Wu, Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230 (1950), 918-920.

STANFORD UNIVERSITY