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I. Introduction and the Main Theorem. Let G be a group and « a

positive integer. We shall say that G satisfies the «th Engel congru-

ence if

(y, x; n) = 1 mod Gn+2       for all x, y E G.

As usual, (y, x; k) is defined inductively by

(y, x;l) = (y, x) = y~xx~xyx,

(y, x; k) = ((y, x; k — 1), x)       for k > 1;

and Gm denotes the wth term of the lower central series for G.

Kostrikin [2 ] has made use of Engel congruences in his solution of

the Restricted Burnside Problem for prime exponent. It is hoped that

the following theorem will be of use in attacks on the Restricted Burn-

side Problem for exponent 8.

Main Theorem. Let G be a group of exponent 8 and let xEG. Let t

be a positive integer 2ï3 and let ytEGt. Let

m = min(/ + 13, 2/ + 10, 3/ + 7, 4/ + 4, 5/ + 1).

Then

(1) (yh x; 4)4 = 1 mod Gm,

(2) (yt, x; 8)2 = 1 mod Gm,

(3) (yh x; 12) = 1 mod Gm.

Remark. When / is replaced by 3 and y3 is replaced by (y, x, x),

where y EG, (3) reduces to the 14th Engel congruence.

Throughout this paper we shall be investigating the canonical ex-

pression, in terms of basic commutators, for the 8th power of a

product of two group elements [l, pp. 179-182]; e.g.,

(4) (xyY = x*y*(y, x)2* ■ ■ • .

We shall use formulas we derived in an earlier paper [3] to compute

the exponents of various commutators appearing in (4), but it would
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1 This result appears in Chapter 3 of the author's doctoral thesis written at the

University of Wisconsin under the direction of Professor R. H. Brück.
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not be impossible for the reader to compute these exponents directly

by "collecting" (xy)8 in the usual manner [l, p. 165].

II. Lemmas.

Lemma 1. Let a, b be positive integers and G a group of exponent 8.

Let yaEGa and zbEGt. Then

(ya, 2(,)4 = 1 mod Gq,

where q = m'm(3a+b, a+3b).

Proof. For notational convenience we write ya as y and z& as z,

and we understand that all congruences are mod Gq.

i - («y)8 - (y, *Y(y, z, yy

yields

(y, zY = (y, z, y)*

which yields

«y, z)4, y) « l.

But

((y, zY, y) m (y, z, y)4.

Lemma 2. Let G be a group of exponent 8. Let t be a positive integer

and let ytEGt. If t^3, then

(5) (yt, x; 4:)2 =i mod Gt+s.

Proof. For notational convenience we write y¡ as y and understand

all congruences tobe mod Gt+s- Since 2 + 8 = min(/-|-8, 22 + 5, 3t-\-2, 4i)

for ¿2:3, the only commutators we have to consider are

x, y, (y, x), (y, x, x), (y, x, y), (y, x; 3), (y, x, x, y), (y, x, y, y), (y, x; 4),

((y, x; 3), y), (y, x, x; y, x), (y, x; 5), ((y, x; 4), y), (y, x, x, x; y, x),

(y, x; 6), and (y, x; 7)

where, for example, (y, x, x; y, x) stands for ((y, x, x), (y, x)). In

order and modulo 8, the exponents of these commutators in the col-

lected form of (xy)8 are (see (4) and the remark following) 0, 0, 4, 0, 4,

6, 2, 2, 0, 2, 2, 4, 4, 2, 0, and 1. Hence, using Lemma 1, we obtain

,^v     1 s (xyY = (y, xYiy, x; 3Y(y, x, x, y)2(y, x, y, y)2(y, x, x, x, y)2
(6)

• (y, x, x; y, x)2(y, x; 5)%, x, x, x; y, x)2(y, x; 7)
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where the nine commutators are understood to be multiplied in order.

Next we replace each occurrence of x in (6) by x2 to obtain

(7) 1 = (y, x; 2)*(y, x; 5)4(y, x; 6)6(y, *, x, x, x, y)2.

For example, one easily verifies that in collected form

(y,x2) = (y, x)2(y, x, x).

Then one gets a collected expression for (y, x2, x2) by writing out

(y, x2, x2) = (y, x2)~lx~2(y, x2)x2

= (y, x, *)-'(;y, x)-2x~2(y, x)2(y, x, x)x2,

collecting the factor, (y, x)2(y, x, x)x2, and performing all possible

cancellations. Similarly one gets a collected expression for (y, x2; 3)

by writing out

(y,x2;3) = (y,*2^)-1*-2^,*2^)*2,

substituting in the collected expression for (y, x2; 2), and collecting

the factors appearing to the right of x~2. The same plan is used to

get a collected expression for each of the commutators appearing in

(6) (with x replaced by x2).

Replacing y by (y, x) in (6) (note that yEGt implies (y, x)EGt), we

obtain

(8) 1 =: (y, x; 2Y(y, x; 4)«(y, x, x, x; y, x)2.

Comparing (7) and (8) we see that

(9) (y, x; 4)6 = (y, x; 5)4(y, x, x, x, x, y)2(y x, x, x; y, x)6(y, x; 6)6.

But we can replace y by (y, x; 3) in (7) to obtain (y, x; 5)4 = 1, and we

can replace y by (y, x; 2) in (9) to obtain (y, x; 6)6 = 1. Hence (9) be-

comes

(10) (y, x; 4)6 = (y, x, x, x, x, y)2(y, x, x, x; y, x)«.

Commuting both sides with y and proceeding as in the proof of

Lemma 1, we reduce (10) to

(11) (y, x;4)6= (y, x, x, x;y, x)\

Next we solve (6) for (y, x; 3)2 and commute both sides of the re-

sulting congruence with (y, x) to obtain

(12) ((y, x; 3)2, (y, x)) m 1.

But
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((y, x; 3)2,(y, x)) = (y, x, x, x; y, x)1,

and hence (11) yields (5).

Corollary 1. Let G be a group of exponent 8, r and s be positive

integers with r^3, and yrEGr, zsEGs. Then

(13) ((yr, x; 4), z,)2 = 1 mod Gr+,+s

and hence

(14) (*., (yT, x; 4))2 = 1 mod Gr+,+s.

Proof. Use the well-known commutator identity,

(ab,c) = (a,c)(a,c,b)(b,c).

III. Proof of the Main Theorem. Let G, m, x, t, and yt be as in the

Main Theorem, but, for convenience of notation, write yt as y and

understand all congruences to be mod Gm. Form and order (within a

weight class) basic commutators from x and y according to the rule:

x < y,        (vi, V2) < (uu U2) if

(a) weight of vi > weight of Ui or
(15)

(b) weight of vi = weight of Ui and vi < Ui or

(c) t>i = Mi and v2 < u2.

The fundamental relation we shall investigate is

(16) (xy)8 = II ueM mod Gm,

where the product is ordered as u ranges through the ordered list of

basic commutators given by (15).

The first step in our proof will be to replace each occurrence of x

in (16) by xi. Rather than first computing e(u) for every u appearing

in (16), a monumental task, and then replacing each x by x4, we shall

instead get an expression, in terms of commutators in x and y, for

the commutator w4 which u becomes when x is replaced by x4. For

many u's we shall observe that utEGm. Thus we shall need to com-

pute e(u) for only those u's, appearing in (16), for which UiEGm—an

easy bit of computation.

Lemma 1 and Corollary 1 are used repeatedly in computing the

following congruences.

(y, x1) = (y, xY(y, x, xY(y, x; 3)4(y, x; 4)(y, x, x, x; y, x)

• (y, x, x; y, x; y, x)(y, x, x; y, x; y, x, x)(y, x, x, x; y, x; y, x, x)3.
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Note. (17) is obtained by the same sort of technique as was used

in going from (6) to (7) ; namely, write

(y, x*) = y^x-tyx*,

collect the right "half," yx4, and perform all possible cancellations.

Use Lemma 1 and Corollary 1 to simplify.

(y, x*, x4) =- (y, x; 4)4(y, x; 6)4(y, x; 8)((y, x; 6), (y, x, x))'

(18) • (y, x, x, x; y, x; x)4(y, x, x, x; y, x; x; x)6

• (y, x, x, x; y, x; x; x; x; x)c2í+9¿3í+6,

where C2i+9GG!l+9 and ¿3¡+6EG3í+6-

Note. (18) is obtained by writing

(y, x4, x4) = (y, x4)-^-4^, xV,

replacing (y, x4), in the above, by its expression in (17), collecting

all factors appearing to the right of x-4 in the resulting expression,

and performing cancellations. Lemma 1 and Corollary 1 are again

used to simplify. (19) through (24) are obtained similarly.

(19) (y, x4; 3) =. (y, x; 8)4(y, x; 10)4(y, x; 12).

(20) (y, x4, y) = (y, x, y)A(y, x, y; y, x)*(y, x, x, y)l(y, x, x, x, x, y)f3i+i,

where/3¡+4GG3i+4.

(21) (y, x4, x4, y) = ((y, x; 8), y)(y, x, x, x; y, x; x; x; y)*.

(22) (y, x4, y, y) = (y,x,y;y,x; y)*(y, x, x, y, y)*((y, x; 4), y, y).

(23) (y, x4, y, y, y) = (y, x, x, y, y, y)6.

(24) Ui = 1        for all other u appearing in (16).

Thus the only commutators appearing in (16) which are not neces-

sarily sent into Gm when x is replaced by x4 are:

*. V, (y, x), (y, x, x), (y, x, y), (y, x;3), (y, x, x,y),

(y,x,y,y), and (y, x, y, y, y).

The exponents, mod 8, corresponding to this list of basic commuta-

tors are 0, 0, 4, 0, 4, 6, 2, 2, and 2 so that (16), with x replaced by

x4, is

1 = (x4y)8 m (y, x*y(y, x4, yY(y, x4; 3)«(y, x4, x4, y)2

(26)
■(y,xi,y,y)2(y,xi,y,y,y)2,

and, substituting from (17), (20), (19), (21), (22), and (23) into (26),

we obtain
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1 - (y, x; AY

which is (1).

The next step in our proof will be to replace y by (y, x) in (16) and

then to square the resulting congruence. Again it will not be neces-

sary for us to compute very many of the e(u) because, first of all,

many of the u's are sent into Gm when y is replaced by (y, x); and,

secondly, we can apply Corollary 1 to any commutator of form (13)

or (14) as long as its exponent is even—it need not be 2.

Replacing y by (y, x) in (16) and using Lemma 1, we obtain

1 a (y, *, %Y(y, x; 4)6(y, x, x, x; y, x)2(y, x, x; y, x; y, x)2

• {{y, x; 4), (y, x))"-(y, x, x, x; y, x, x)2(y, x; 6)4

• ((y, x; 5), (y, x))*(y, x, x, x, x; y, x; y, x)*

.    . • ((y, x;4), (y, x, x))*(y, x,x;y,x;y,x, x, x)6

• ((y, x; 6), (y, x))*((y, x; 5), (y, x, x))*((y, x; 4), (y, x; 3))*

• (y, x, 8)((y, x; 7), (y, x))*((y, x; 6),(y, x, x))*

• i(y> x; 5), (y, x; 3))*((y, x; 8), (y, x))*((y, x; 7)(y, x, x))*

•((y,x;6),(y,x;3))*((y,x;5),(y,*;4))*

where * denotes an exponent that we have not bothered to compute.

Squaring (27) and using Lemma 1 and Corollary 1—note that 2 *

is an even number—we obtain

1 - (y, x; 4)«(y, x; 8)2

which, in view of (1), reduces to

1 = (v,x;8)2

which is (2).

Finally, to prove (3), we replace y by (y, x; 5) in (16) to obtain

1 = (y, x; 6Y(y, x; 8)6(y, x; 10)4(y, x; 12)

which, in view of (1) and (2), reduces to (3).
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