
ON THE COLLECTION PROCESS1

EUGENE F. KRAUSE

I. Introduction. Let gi, g2 be free generators of a free group G.

Form a set C of basic commutators from gi and g2 with an ordering

such that gi<g2 and (g2, gi; w—V) is the first basic commutator of

weight w (see  [2, pp. 165-166]). As usual

(u, v; 1) = u~h~xuv   and    (u, v; ») = ((u, v; n — 1), v).

For notational convenience we shall often denote, for example, gi by

1 or (1), ((g2, gi), gl) by 211, and (((g2, gl), gl), (g2, gx)) by 211; 21.

Thus the ordered set (C, <) begins

1 < 2 < 21 < 211 < 212 < 2111 < • • • .

The following fundamental theorem is due to Philip Hall [3]. (See

also [2, p. 175].)

Theorem 1. For any positive integer n,

(1) (gig2)n= il«e"<n),

where (i) the product is ordered by the rule, setM is to the left of t"M

if and only if s<t; (ii) the " = " signifies that a valid congruence will

obtain mod Gkfor any positive integer k; (iii) eu(n) is a uniquely deter-

mined integer producing polynomial of degree g weight of u.

Remark. It has also been observed [2, p. 326] that

(2) «m...i<«)-(    "   ,Y K^O,
k \K + 1/

where

211 • • • 1
K

denotes the commutator (g2, gi; K).

Equation (2) has been used to prove that a group, G, of prime ex-

ponent, p, satisfies the (p — l)th Engel congruence:

(y,x;p - 1) E Gp+i.
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Kostrikin, in turn, used this congruence to solve the restricted Burn-

side problem for prime exponent [S]. In this light, equation (2) ap-

pears to be of great value.

The purpose of this paper is to determine the eu(n) for a much

larger class of basic commutators u than that covered by (2). We

shall outline an algorithm for computing eu(n) for all wGC which,

though very tedious in general, is nevertheless practical for certain

m's having an uncomplicated structure. Specifically, we shall compute

(3) C211---1 22-   -2(n)

K L

(4) e2ll...l 22--.2;2l(«)

K L

(5) C212;21l(«)

Note that when L = 0, (3) reduces to (2) by a well-known identity.

Note also that formulas (3), (4), (5) provide us with eu(n) for all u

of weight ;= 6. Using these formulas we have been able to prove that

any group of exponent 8 satisfies the 14th Engel congruence. This

result is stronger than that guaranteed by Sanov's Theorem [4]

(23rd Engel congruence), and even stronger than that predicted in a

conjecture of R. H. Brück [l] (15th Engel congruence).

II. The plan for computing the eu(n). Theorem 1 tells us, on the

one hand, that

[d)(2)]"+1 = (1)(2)[(1)(2)]»

= (l)(2)(l)i<»>(2)«<»>21<*i<»>

and, on the other hand, that

[(1)(2)]"+1 = (l)M"+1>(2)C2<n+1)2162i("+1) • • • .

Obviously eu(n + \) =eu(n) plus the number of new m's introduced

during the collection of (6) [2, p. 165]. Let du(n) be that number; i.e.,

(7) du(n) = eu(n -f 1) — eu(n).

It follows that

n-l

(8) eu(n) = XI du(m),
m—0

rçX( m\( m\

-!C)k:)Q+(/+1)}
for K ^ 1, L ^ 0 where, K ^ 2 if L = 0,
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and hence the problem of computing the eu(n) is reduced to that of

computing the du(n).

It should be noted that the application to (6) of the collection proc-

ess described in [2, p. 165 ] yields only basic commutators since all the

exponents in (6) are positive.

If m=1 or m = 2 then obviously du(n) = l and eu(n)=n. If u is not

1 or 2 then u has the form

(9) «= (s,t;r),

where s, t are basic commutators, r 2:1, and r is maximal in the sense

that if s = (s\, s2) then s2¿¿t; i.e., s2<t. We shall refer to (9) as the

canonical form of u.

As we collect (6) a new u of the form (9) can be introduced only

during the collection of the t's. We observe that after the collection

of all basic commutators <t, (6) has assumed the form

(10) [(1)(2)]»+1 = ( II i'e"(n+1) ) iritet(n

\ v<t /

)   .   .   .  se,(n)

where irt is a product of basic commutators ^t, but no basic com-

mutator of form (w, t) appears in irt. Hence all du(n) new u's are intro-

duced by the collection of the t's in (10). This suggests some defini-

tions.

Let s be a basic commutator. We observe, as before, that after the

collection of all basic commutators <z, (6) has assumed the form

(11) [(1)(2)]"+1 = ( II »«•<»+1>) irz ( It *e"(n)) -

where irz is a product of basic commutators ^s, but no commutator

of form (a>i, w2) appears in irz for w^z. (Note that (10) is (11) with

z = t.)

Definition. Let x, y be basic commutators such that z^x^y.

P(y, i, x, z) denotes the number of y's preceding the ith x in (11)—

numbering the x's from left to right. F(x, i, y, z) denotes the number

of x's following the ith y in (11)—numbering the y's from left to

right.
Definition. Let N(a, b, c, y, x) denote the number of (y, x; b)'s

introduced as the x's are collected past the y's in ycx°.

Lemma 1. For all positive integers a, b, c,

N(a,b,c,y,x) =ci    j.
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Proof. The lemma is obviously true when <z=l. Assume induc-

tively that it is true for a and consider N(a + l, b, c, y, x). When b= 1,

N(a + 1, 1, c, y, x) = N(a, 1, c, y, x) + N(l, 1, c, y, x)

=<(;m;)-«(T>
When b^2,

N(a + 1, b, c, y, x) = N(a, b - 1, c, y, x) + N(a, b, c, y, x)

-cm:)-cî>
Notation. Pí = P(s, i, t, t); i.e., Pi is the number of s's preceding

the ith t in (10), where i= 1, 2, • • • , et(n + l).

Definition. Define a sequence of functions, fk, by

/i(0 = ¿Py, *= 1,2, ■■■,et(n+ 1);
y-i

/*+i(l) = 0, ft £ 1;

/n-i(0 = E/*(/), ft è 1; » = 2, 3, . . . , et(n + 1).
;-l

Lemma 2. PAe number of (s, t; r)'s introduced by the collection of the

first h t's in (10) is fr(h) for l^h^et(n + l). In particular, for u of

form (9),

(12) du(n) =fr(et(n+l)).

Proof. The lemma is obviously true when h=l so we assume in-

ductively that it is true for h. If r=i, the number of (s, t)'s intro-

duced by the collection of the first h + 1 i's = the number introduced

by the first h t's+P(s, h + 1, t, t)=fi(h)+Ph+i=fi(h + l). If r^2, the
number of (s, t; r)'s introduced by the collection of the first h + 1 t's

= the number of (s, t; r)'s introduced by the collection of the first

h ¿'s+the number of (s, t; r— l)'s introduced by the collection of the

first h t's=fT(h)+fT-l(h)=fr(h+l).
In view of (12) we have found du(n) in terms of P(s, i, t, t) for

i = 1, 2, • • -, et(n + l). But in view of (8) we shall be able to compute

et(n + l) once we know dt(n). This provides us with the key to the

algorithm (Theorem 4).

III. The main theorems, with examples. Unless u, of form (9), has

the additional properties that
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u = (s, t; r) with r >: 1 in canonical form, and

(13) s = (íi, o-; a) with a 2: 1 in canonical form, and

t = (¿i, t; J) with 6 S; 1 in canonical form,

we can compute P(s, i, t, t) lor i=l, ■ ■ ■ , e¡(w + l) and hence can

compute du(n) by (12) and eu(n) by (8). Specifically:

Theorem 2.

P(2, i, 1, 1) = 0 for i = 1,

= 1 for i = 2, ■ • ■ , n + 1.

P(211 ••• 1,»,2,2) - 0 for i - 1, a>0,
a

= (     J        /or i = 2, •••,«+ 1.

(14) ¿iu...iM...i(») = ( "V* J a>0, rèO,

a«d (3) follows from (14) fry (8).

Proof. All w's of form (9) but not of form (13) fall into two classes:

those with t—\, those with t = 2. Use Lemmas 1 and 2.

Before studying the m's of form (13) we need a definition.

Definition. A(K, L, m, i, y, x) denotes the number of (y, x; K)'s

preceding the ith (y, x;L) in the form yxm assumes after the collection

of the x's. Since A (K, L, m, i, y, x) is independent of x and y we shall

write it as A(K, L, m, i).

Theorem 3. Hypotheses, (i) u is a basic commutator of form (13);

(ii) «o is a positive integer; (iii) for all n g«o we have the following situa-

tion:

1.1. If t <<t then we know all of dt(n) ; d„(n) ; dsi(n) ; P(si, i, t, t) for

i=l, ■ ■ ■ , c((« + l) if Si^t; P(t, i, Si, 5i) for i=\, ■ ■ ■ , eSl(» + l) if

si<t; and P(si, i, a, v) for *=1, • • • , e„(« + l).

1.2. If t>(t then we know all of dt(n) ; dT(n) ; dti(n) ; P(s, i, t\, tî) for

i=l, ■ • ■ , etl(n + l); and P(h, i, t,t) for t=l, • • • , eT(« + l).

2.1. If T = a but Si^h then we know all of dt(n); d¡(n); dtl(n); dSl(n);

d„(n); P(sx, i, h, h) for i=\, ■ ■ ■ , eh(n + \) if sx>tù P(h, i, su Si) for

i=l, • ■ ■ , e,,(« + l) */ si<tù P(su i, a, a) for i=\, ■ • ■ , e„(« + l);

and P(h, i, r, t) for ¿=1, • • • , eT(« + l).

2.2. If T = a and 5i = ¿i (and hence a>b) then we know all of dt(n);

d.(n); d„(n); dSl(n); P(su i, a, a) for i=l, • • • , g,(« + l); and

A (a, b, m, i) for m = 1, • • ■ , e,(« + l) and
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1,
/«.(» + D\

Conclusion. We can compute P(s, i, t, t) for *= 1, ■ • • , et(n + l)

for all n^«o by means of formulas (15), (16), (17), and (18)—to fol-

low—which only involve numbers obtainable from the hypotheses.

Hence, since we also know r and dt(n) for all «^«o, we can compute

du(n) for all n^n0 by (12).

If t < a then for i = 1, ■ ■ ■ , et(n + 1),

(15)

(16)

(17)

PCW,*) /P(ff,/, si, <r)\
P{s,i,t,t)=    £    (      ¡      j **(*.*.

= 0 if P(ii, t, /, <r) = 0.

Notice that P(si, i, I, o) = P(si, i, t, t)    if si à t,

— P(si, i, t, Si)  if Ji < t.

flf T  >   0-,

P(s, (fto +-h ft.) + ¿, i, 0 = P(5, p + 1, h, r)

for » = 0, • • • , dh(n) — 1 ; where ka — 0,

t, «0 ̂  i,

/P(r, A, h, r)\

èA=i   ft   ;
for 1 ^ A ^ dtl(n),

<F(t, h, h, r)>

ft y

î = 1, • • • , &c+i where if kv+i = 0 we simply ignore

(16) for that value of v, and

P(s, dt(n) +j, I, t) = P(s, dh(n) + 1, th h) = dt(n)

for/ = 1, ■ • ■ , et(n). Notice that P(s, i, h, t) = P(s, i, ti, ti).

If r = a but ii ^ ¿i,

P(i, (¿o +-h ft.) + i, t, t) =
P(.i.^i.tl..) /F(<r,j, si, «r)\

_ /F(a, h, h, <r)\
for 1 g ft g ¿(1(«),

for » = 0, • • • , dtl(n) — 1; where k0 = 0,

F(cr, h, h, o-Y

b

i = 1, • • ■ , kv+i where we ignore (17) for any v such

that kv+i = 0, and

P(s, dt(n) + j, t, t) = d„(n) for / = 1, • • • , et(n).

Notice that P(si, i, h, a) = P(ii, i, h, h) if Si > h,

= P(Si, i, h, Si)   if Si < h.



i964] ON THE COLLECTION PROCESS 503

If t = ff, Si = h, and hence a > b,

^/F(ff,j, Ji, <r)\
P(s, (*,+ ••• + *,)+ *,M) = Zí ¡ j

+ ¿(a, b, F(ff, v + 1, 5i, o-), ¿)

(18)
for v = 0  • • ■ , ási(«) — 1; where, ko = 0

P(er, Ä, 5i, <r)>= /F(ff, h, 5i, <r)\
for 1 á A ̂  dn(n),

i = 1, • • • , ¿r+i where we ignore (18) for any v such

that ¿„+i = 0, and

P(s, dt(n) +/, t, t) = d¡(n) for lájá «*(»)•

Proof. Use Lemma 1 and properties of the canonical forms in (13).

Examples of the use of Theorem 3.

1. u = 211 • • • 1 22 • ■ • 2; 21
K L

with K>0, L>0 satisfies hypothesis 1.1. Formula (15) yields

P(s,i,t,t) = (^~K   )(*)  farláiá»;

p(^<)=(X) for«+i^(T)-

Equations (12), (8) yield (4) with the restriction L>0.

2. m = 212; 211 satisfies hypothesis 1.1. Formula (15) yields

P{s,i,t,t) = kioii = ( ~ ) + !»• -^(^wherela^Q);

pc,^*-(T)ta(a)+iáíí(T)-
Equations (12), (8) yield (5).

3. « = 211 • • • 1;21

with 2£>:2 satisfies hypothesis 2.2. Formula (18) yields

P(s,i,t,t) = ( J loti = 1, • • ■ ,«;

p(M,/,/) = Qj    fori = » + i,•• -,r 2 V
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Equations (12), (8) yield (4) in the case of L = 0.

Comment. The author wishes to thank the referee for pointing out

that one can also obtain formulas (3), (4), and (5) from formula (8)

by applying the methods of P. Hall [3] to (6). These methods include

assigning the labels 1,2, •••,« + 1 in order to each of the two basic

commutators of weight one which appear in (6), and then determining

what "precedence conditions" are satisfied by the «-tuple of labels

corresponding to a basic commutator of weight n which arises during

the collection of (6).

IV. The algorithm.

Theorem 4. Let D and no be positive integers. Suppose we know all of

the following values: (i) dw(n) for all w of weight ^D and for all n^n0;

(ii) P(s', i, t', t') for t=l, • ■ • , et'(n + l) for all n^n0 for all v of

weight ^D having canonical form v=(s', V'; r')\ (iii) A (a, b, m, j) for

all positive integers a, b, m, j. Then, by means of Theorems 2 and 3 and

equation (12), we can compute (i) and (ii) with D replaced by D + Í.

Proof. Take u of weight D + l—say u has form (9). If m does not

have form (13), Theorem 2 gives us our result. Study the m's of

form (13) in four cases: case 1.1—r<a, case 1.2—r>a, case 2.1—

T = (r but Si5¿ti, case 2.2—r = cs and S\ = t\. In case 1.1 we want to

apply Theorem 3 so we must have hypothesis 1.1 holding. To see this

is true we observe that /, a, and 5i are of weight ^ D ; that si = t implies

P(si, i, t, t)=i—l; that Si>t implies (su t) is basic and of weight á/_);

that Si<t implies (t, Si) is basic and of weight ^D; that (si, a) is

basic and of weight ¿Z?. Then we apply hypotheses (i), (ii) of the

present theorem. The other cases are handled similarly.
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