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The theorem of this paper is suggested to the author by H. S.

Shapiro's proposal [3], to the effect that

(1) Lim  Ê ( - l)*/(¿/re) ( * ) / 2" = 0
n-* «•    k=o \ K / /

for each/ in C[0, 1], the class of continuous functions from [0, l] to

the complex numbers. Indeed, we find that this proposal is precisely

the assertion that the sequence p, pn = l/2n (re = 0, 1, • • • ),is a regular

Hausdorff mom,ent sequence with limit 0. The latter assertion is well

known: for relevant ideas, one may consult [4, Chapters 14 and 16]

and, especially, [4, p. 309] regarding the Euler-Knopp mean (E, 1/2)

associated with the aforementioned sequence p. The connecting link

is the following result.

Theorem. In order that the infinite complex number sequence p, with

po = 1, be a regular Hausdorff moment sequence, it is necessary and suffi-

cient that, for each f in C[0, 1 ], the limit

(2) Z(j0 = Lim  ¿ (- l)"-Kfik/n) ( * Wv
n->™    k=o \k /

exist, and in this case, for each f in C[0, l], L(J) =/(l) -Lining pn.

Indication of proof. If L(f) exists for each /in C[0, l], then

there is a number B such that

n   / n\

(3) E    J|A»-V*|   ^B        (n = 0, I, ■■■).
i_0 \ K /

This is an application of the "principle of uniform boundedness" in

the linear space C[0, l], normed as usual by ||/|| =L.U.B. |/(x)| : see

[l, Chapter 2], especially the remarks on pp. 80-81 thereof. By a

theorem due to F. Riesz [4, p. 271 ], (3) is equivalent to the existence

of a complex-valued function (b, oí bounded variation on [0, l],such

that
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(4) 0(0) = 0    and   ¡xn =  j   Ind(b       (n= 0,1, ■ ■ ■),

where 7 denotes the identity function on [0, l]. In this circumstance,

the sequence ju has the limit 0(1) —0(1 — ), and there is a theorem due

to F. Hausdorff [4, p. 309] to the effect that p is regular only in case

0 is continuous at 0, i.e., if and only if 0(0 + ) =0.

From the preceding considerations, together with the Weierstrass

theorem on uniform approximation by polynomials, we see that the

theorem will be established once we have the following lemma.

Lemma. If u is the Hausdorff moment sequence given by (4) with 0 of

bounded variation then, for each polynomial g, the sequence X(g),

(5) \n(g) = E |(-i)n-Ww)QWvj  - (-1)»«(O)0(O+),

converges and has the limit g(l) [0(1) —0(1 — ) ].

Proof of lemma. Starting with a positive integer w, and the bi-

nomial theorem in the form

(6) ho(z) = Z 2* ( ? V1 " I)n~kp = (1 ~ I + 2/)"'
*—o     \k /

one establishes inductively the fact that if p is a positive integer not

greater than n then hp(z) =zäp'_x(z) is given by

(7)    Z «**p ( n ) (i - 7)«-*7* = E ( n ) dp,q(i -i + ziy-<(ziy,
*-o \ k / 3_i \ q /

where dp,i=l, dp,p = p\, and dp+i,t= (dp,q-i+dp,q)q il Kq<p: see

[2, p. 57] for a similar use of the numbers dp,q. Now by taking z to

be —1 in (7), and multiplying by ( — 1)", we see that

(8) E (-l)n~kkp(n)(l - I)"-"Ik = Z(K)dP,q(2I - l)»-«7«.
*-o \ k J 5=i \ q /

From (6), we see that for each positive integer n

(9) \n(P) =  f    (27 - l)"dd> + 0(1) - 0(1-),
J 0+

which clearly has limit 0(1)—0(1 —) as n—><*>. On the other hand,

we see from (8) that, for 0<p<n,



368 J. S. MAC NERNEY

(10) \n(I') = E (1 /nY (n) dp,q f  (2/ - l)"-«I«dd,,
8=1 \q /        -Jo

which also has limit <£(1) — <£(1 — ) as re—* °o. This completes the proof.

The theorem, now established, seems a natural companion to the

following proposition, which is easily established by application of

the "principle of uniform boundedness" and computation with Bern-

stein polynomials, and which we state without proof:

Proposition, ire order that the infinite complex number sequence p

be a Hausdorff moment sequence, it is necessary and sufficient that, for

each f in C[0, l], the limit

M if) = Lim Ê /(¿/re) ( * ) A"-*pk
n-»»    k=o \ k /

exist, and in this case, for each f in C[0, l], Mif) =f\fd<p where 4> is a

function of bounded variation having p as its moment sequence.
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