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In [2] Robert Hermann introduced the concept of tangent vector

fields on the space of functions from one manifold to another. He

applied these to give a new proof of the Cartan-Kähler theorem. An

example of such vector fields are maps from the jet space to the tan-

gent bundle of the target space which commute with projections. It

is this class of vector fields which we study here.

Using prolongations a Lie bracket operation is defined and justified

on the grounds that it agrees with the primitive definition when the

latter has meaning here. By similar methods an exponential expan-

sion is deduced. An example is given which shows that the 1-param-

eter transformation groups on the function space cannot be consid-

ered a parameter space for a pseudo group in Kuranishi's sense [3],

for it need not involve infinite analytic mappings.

1. Introduction. Every mapping and manifold will be smooth of

class C°° unless otherwise noted. If N and M are two manifolds,

Jk = Jh(N, M) is the manifold of ¿-jets /*(/) of order k of maps

/: N—*M (see [l]). a and ß denote the customary source and target

projections. T(M) is the tangent bundle of M, My the tangent space

at yEM. w: T(M)-+M is the bundle projection. CC(N, M) is the set

of all C" maps on N into M.

Definition 1. A k-vector field on C°°(7V, AT) is a map 6: Jk—>T(M)

such that iv oo = ß.

Hermann studied ¿-vector fields as a special class of "formal tan-

gent vector" fields [2, p. 8]. If/: N-^M, a "vector" along/ is a map

\p: N—*T(M) with \p(x)EMf(X) for all xEN. This is what one would

get as the derivative of a 1-parameter family ftG C°°(N, M) where

fo=f. Each ¿-vector field 6 defines a vector along/ by ^(x) = 6(jx(f)).

Let /=( —e, e). An integral curve of 6 starting at foECx(N, M) is

a 1-parameter family/: NXI^>M with/(x, 0) =fo(x) and

df k       1
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1 The referee observed that this is a special system of the form df/dt

= F(dP/dxk, ■ • ■ ). Hence even in the analytic case, solutions need not exist (for

k>l) with arbitrary initial conditions.
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In coordinates this is seen to be a Cauchy-Kowalewski system of order

k. By uniqueness of Cu (i.e., analytic) solutions we see that in the C"

case if go(x)=f(x, t), and g(x, t) is an integral curve starting at go,

then g(x, t) =/(x, í+t). Thus, these integral curves, when they exist

and are unique, behave as the orbits of a local 1-parameter group.

2. An example. Let N=M=E\ Euclicean 1-space. Let (x), (y),

and (x, y, p) be coordinates on N, M, and /'(iV, M), respectively.

Consider the 1-vector field 6(x, y, p) =p(d/dy)v. Given /o(x) : N—*M,

f(x, t) must satisfy

df      df
-f = -> /(*, 0) =/o(x).
dt      dx

We think of f(x, t) as the image of /o under a transformation Ft on

functions:/(x, t) = Ft(fo).

To compare the action of Ft with M. Kuranishi's concept of in-

finite analytic mappings [3], consider all convergent power series

at the origin : /0 = 23anXn. Then

"/"/*" (n + m) !\
Fi(fo) = X,[ X, —- an+m-■-   x"

„=o\m-o ml n\      /

is not an infinite analytic mapping in Kuranishi's sense because the

coefficient of x" in Ft(f0) is an infinite series in the coefficients of /o

rather than a polynomial.

3. Lie bracket. If 0 is a ¿-vector field let ht: Jk-^M for -e<t<e

satisfy h0 = ß and (dh,/dt)t=o = 6.2 U fEC°°(N, M), the ¿th prolonga-
tion of/, pk(f)ECx(N, Jk) is defined by pk(f)(x)=jkx(f). Similarly,
the rth prolongation of h,, pT(ht)ECx(Ik+r, Jr), is defined by

p(ht)(j7\f))=ix(htop\f)).

Definition 2. Pr(d), the rth prolongation of 6, is defined to be

pmT(f)) = f [/wof(/))]w.
Of

Then Pr(0): Jr+k^T(Jr), and if tt denotes the projection of P(Jr)

onto JT and p^+* carries jl+r(f) in J*+r to j'i(/) in J", then tt o Pr(0)

Kuranishi's notion of formal partial derivative is very useful in

describing Pr(B) in coordinates. If (x1, • • • , x") and (y1, • ■ • , ym)

» That is, if F: M-+R, 6(F)(jx(f))=dï F o h,(jx{f))]/dt\ „,.
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are local coordinates on UEN and VEM, respectively, let

(x\ y\ p)v ■ ■ ■ , p^...jk) be local coordinates on cr^lOnß-^V),

where X= 1, • • • , m; ih= 1, • • • , n. If u: Jk-^R (real numbers), de-

fine djw: Jk+l^>R tobe

f     k+i              du        du    x                         du        x
djU(jx    (f))  = — + — íy + • ■ ■ + —-fe.. .iki.

dx'      óV djr
r h ■ ■ it

This operator is linear and has the important property that if

/: U-+V, then d(u o pk(f))/dx1' = dfju(pk+1(f)). Using these facts and

Definition 2, it is possible to prove the following

Lemma 1. If on or^lDnß-^V), 6 = frx(p/dyK), then

h H-■•ir

Moreover, Pr is linear.

Definition 3. Let B and \p be r- and s-vector fields, respectively.

Then the Lie bracket of 6 and \p is

[0, i] = P'B o ^ - Prí o 6.

By the composition notation we mean to interpret \p as an operator

carrying C°(M, R) into Ca(J', R). Similarly, P*6 carries C°°(J«, R)

into CX(JT+', R).

Alternatively,  if  ht: Jr—>M and  g,: J'-^M satisfy h0 = ß, go = /3,

— €</<€, —e<T<€, and (dht/dt)t=o = 9, (dgr/dr)T^o = ,4/, then

(Pdoi)(jT(f)) = -£- k,o/*^(/))]^w.
«MOT

This representation is convenient when proving

Lemma 2. [0, i//] is aw (r+s)-vector field.

Lemma 3. P"(PS6 o \p) =P'+"9 o Pty.

Proof. This follows from pq(gTop"ht)=pqgT opt+qht, which is a

consequence of the definitions.

Lemma 4 (Lie Identity).

[MM+ [[*,*]«]+ [[*,*]*] = o.

Proof. Suppose 6, \p, <p are r-, s-, and g-vector fields, respectively.

The left side of the above equation is
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P«(P°6 O ̂  - Pr^ O 0) O <¡> - P>+r<b O (P*B O ip - Pr<p O 0)

+ Pr(Pqy¡/ o <t> - P'<¡> o fa) o 0 - P"+'0 o (Pty o <t> - P°<¡> o fa

+ Ps(Pr<l> o 0 - P"0 o <¡>) o $ - P'+ty o (Pr<f> o 0 - P"B o <t>).

This equals zero by Lemma 3 above.

It follows from Definition 3 of the Lie bracket that [0, 0] = O.

Hence we have proved

Theorem 1. If Vk is the linear space of all k-vector fields, k = 0,1, • • -,

then the direct sum

00

v = 23 © v
4-0

is a graded Lie algebra under the Lie bracket.

A definition of Lie bracket in the older literature used local 1-

parameter transformation groups. If 0 and \p are vector fields on a

manifold generating local transformation groups Qt and ^r, respec-

tively, then [0, fa] is the vector field obtained by transforming ©(

by yT. That is,

d2
[0, t] =- [*r o 9( o *_T]i=T=o.

dtdr

We do not have 1-parameter local groups on C°(N, M) in general.

However, one may observe how individual functions behave when

they belong to integral curves of 0 and fa

Theorem 2. Let 0 and \p be r- and s-vector fields, respectively. Let

/=(-€, €). Letf(x): N—>M. Suppose:

a. /(x, t) : NXl^>M and satisfies

^;(x,t)=fajrx(f)),       f(x,0)=f(x);
at

b. f*(x, t, t) : NXIXI^M and satisfies

^- (x, t, t) = 0(j'x(f*)),        ~f*(x, t, 0) = /(x, 0 ;
at

c. J*(x, t, t, t):NXIXlXl^M and satisfies

d'f*
(x, t, r, t) = fajx(n),        /*(*, t, r, 0) = f*(x, t, r).

at

Then
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12   ■/*(*,  -t,T,l)\t=T.o=   [0,t](jT(f)).
dtdT

Proof.

d2
f*(x,-t,T,t)\t„=0

dtdT
d2 d2    .

=-f*(x, t, T, t)    (=r=f=0 H-f*(x, t, T,  t)    i_r_i_0
dtdT dTdt

= - —/*<*' *> t) I»—• + 7~ *[&/*)]»—« - T 0O''(/)) l«-o
dwr dr d2

+ r^Ly«(/*(*,o,r))]T_o.
or

We can calculate these using local coordinates (see above).

â*7"    \d      /      _    df"
-0X (*<,/",—
dt     \ dx> axh . . . axi,/

Ô0X dl"     ô0x    a2?" <30x d'+1l"
- +-—.+ • • ■ +

dy"   dt       dp",  dtdx' dp,\---h   dtdx'' • • • oxJ«

<?0X 00x    # d0x       t f

= — V + — W + • ■ ■ +-*«( • • • ¿>/.)«"0
dy        dp* dp,\--j.

= P't o 0.

In the same way the last term in the first equation becomes P'd o fa

Q.E.D.

4. The exponential map.

Lemma 5. Let 0 and \p be r- and s-vectors, respectively.  Suppose

f(x, t): NXI->M satisfies 6(fx(f)) = (df/dt)(x). Then

^-fafx(f)) = P°0ofajT(f)).
at

Proof.   In  the  previous  local  coordinates,  we  are  given  that

PW)) = W/àt){x,t). Hence

d  |X/,,„      #x  3/"      #x o2/" ÓVX â«+]/"
—^ (;*(/)) =-— + — ——. + • • • +
o¿ dy"    dt        dp* dtdx' dp" .. .,■    d/dx1'1 • • • dx>-

i !\
dip* dipx   * öi^x i i

= 7^0" + -r~à> + ■ ■ ■ +-*',( • • • djt(0")),
dy" dp" dp" .. .,•
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evaluated at jx+r(f). The result follows from Lemma 1.

Theorem 3. Let 9 be an r-vector field, where N = En, M — Em. Let

f(x, t):EnXl-+Em satisfy (df/dt)(x, t) = 9(fx(f)), where

f(x,t)   =   i-Jn(x)
n=o n\

converges on EnXI. Then identifying T(Em) with Em,

/„(*) = Pin~1)r8 o P{"~2)r6 o ■ ■ ■oPr6oe(j?(f(x, 0))).

Proof.   By repeated  application  of  Lemma 5  and from  df/dt

= 6(fx(f)) it follows that

^-(x,t) = PBoe(j':(f)),
at2

— (x, t) = P2re o Pr9 o 6(jlr(f)), ■ ■ ■. Q.E.D.
dt3

Theorem 3 shows that in thinking of 9 as an infinitesimal trans-

formation on CX(N, M), one should consider

exP(0)(/o) -* ¿ - P(n"1)röo • • - o preod(j7(U))
n=n  n\

as a generalized exponential formula.
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