OSCILLATION THEOREMS FOR ELLIPTIC EQUATIONS
KURT KREITH

This paper deals with oscillatory behavior of solutions of singular
self-adjoint elliptic equations of the form

(1 i —a—<a,«,- au> +cu=0.

i,j=1 0%; 0%;

We shall assume that the coefficients of all equations of the form (1)
satisfy

(i) ai;(x) differentiable, c¢(x) continuous;

(i) aij=aj, c=¢;

(iii) Y a«;£:E;>0for all complex n-tuples (&, « + -, £,)#(0, - - -, 0)
in a smooth bounded domain G C E". If the coefficients of (1) can be
extended into a larger domain G’ DG so that (i)-(iii) hold in G as
well as G, then we say that (1) is nonsingular in G. Points of G at
which such an extension is not possible comprise the singular bound-
ary S.

For n=1, these considerations will reduce to the well-known oscil-
lation theory for the Sturm-Liouville equation

1" i(a (ﬁ> + cu =

on an interval G=(k, k). If x=h is a singular point and «(x) is a
solution of (1), then we have

DEFINITION 1. u(x) is oscillatory at x =# if, for every neighborhood
N(h), u(x) has a zero in GNN(h).

In extending this definition to solutions of (1), we restrict our at-
tention to certain mild kinds of singularities on a single »—1 dimen-
sional component S; of S.

DerINITION 2. We say that #(x) is weakly oscillatory at S; if, for
every open set HDS;, #(x) has a zero in HNG.

DEFINITION 3. We say that u(x) is strongly oscillatory at S; if, for
every x&.S; and every neighborhood N(x), #(x) has a zero in GN\N(x).

To simplify statements of theorems we shall assume that a change
of variables has effected the canonical situation! in which
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1 That this canonical form can generally be attained has been shown by Mihlin [3].
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G C {x| 2 > 0},
S; C {z]| x. = 0},
Qin = ay; = 0 for i=1,2’...’n_1.
A principal tool will be the following Sturmian theorem for elliptic
equations [1; 2].

THEOREM 1. Let u and v be solutions of the elliptic equations

(1 i 'a_(aii %) + cu = 0,

=1 0%; i

(1a) 2-19—<a,, o )+w—o
i j=1 0%; 0x;
in a bounded domain G CE". If T is a domain satisfying T CG and if
(1) the matrix (a;;—aq;) is non-negative definite in T,
(i) czv,
(iii) v=0 on dT,
then u(x) must have a zero in T.

In order to get oscillation theorems for (1), we shall let # denote

the coordinates (x;, « + -, %,—1) and make use of equations of the
form

(1b) d‘; (a(x,.) )+ Z (a;,-(a?) %) + y(x)v =0

1,7=1 ox 1
whose coefficients satisfy (i) and (ii) of Theorem 1. That is, we assume
that in G

n—1

@ 2 (ay(®) — ay(0)EE 2 0 forall (&, - - -, £,
£,7=1

a(%,) — ann(x) = 0;
(ii") c(x) = v(x,).

We shall also define u,(2) as the first eigenvalue of the boundary prob-
lem

— 'il <a,~,-(5c) z¢)=y¢ on GN {z|x, =1}.

4,5=1 6x, Xs
=0 on GN {z|= =1},
and set po=1lim,.q sup w(f).
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THEOREM 2. If for some ¢>0 the equation
@ 2 (a0 Z) + b0 = ot 9l = 0

1s oscillatory at t =0, then every solution of (1) is weakly oscillatory at S..

Proor. From the definition of u, there exists a subset Z of .S; which
satisfies £ CS; and for which the boundary problem

1l 9 a0
4) - —<a,-j ——) =9, 6 =0 on 4%,
i,j=1 6x,~ dx;
has smallest eigenvalue v,(t) S po+e Choose § >0 so that the cylinder
I =2X{x|0<x <8}
is contained in G. In T'; we use separation of variables to solve the
equation (1b) subject to the boundary conditions =0 on 3I'"\G. One

such solution is of the form v,(x) =6:(%)w(x,), where 6, is the eigen-
function of (4) corresponding to »1(x,) and w(¢) is a solution of

d dw
(a0 57) = it + 300w =,

w(8) = 0.

Since —»1(f) = — (uo+¢€) and since (3) is oscillatory at ¢=0, Sturm’s
comparison theorem assures us that w(¢) is also oscillatory at t=0.
Thus v:(x) =6:(%)w(x,) has a sequence of nodal domains of the form

Ty = 2X{x| & < 20 < 8us}

where §; | 0. By Theorem 1, #(x) has a zero in each I'x. Thus u(x) is
weakly oscillatory at S;.

THEOREM 3. If for every real M the equation
®) = (a0 2 4 10 + 3w = 0
dt dt
is oscillatory at =0, then every solution of (1) is strongly oscillatory
at S,'.

Proor. Let xo= (&0, 0) be a point of S; and suppose there exists a
neighborhood of xo for which N(x¢)/\G contains no zeros of u(x).
Construct a cylinder IV = Z'X {x|0 < x < 8} so that &, € 2’ and
IV CN(x0)NG. Let \; denote the smallest eigenvalue of
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n—1 F:] Pl

(#) -2 ——(a.-,' l—) =X\, ¢ =0onaZ.
$,j=1 ax; ax;

Using separation of variables to solve (1b) subject to v=0 on dT'NG,

we again find a solution of the form v(x) =y1(z)w(x,), where ¥1(%)

is the eigenfunction of (4’) corresponding to A; and w(¢) satisfies

d dw
©) E(aw d—t) + r® = Mw = 0.

By hypothesis, (6) is oscillatory at t=0, and v(x) again defines a se-
quence of nodal domains of the form

T¢ = Z'X{x| 8 < 22 < 841}
where 8 | 0. By Theorem 1, #(x) vanishes in every I'Y.
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