OSCILLATION THEOREMS FOR ELLIPTIC EQUATIONS

KURT KREITH

This paper deals with oscillatory behavior of solutions of singular self-adjoint elliptic equations of the form

(1)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(a_{ij} \frac{\partial u}{\partial x_{i}} \right) + cu = 0.$$

We shall assume that the coefficients of all equations of the form (1) satisfy

- (i) $a_{ij}(x)$ differentiable, c(x) continuous;
- (ii) $a_{ij} = \bar{a}_{ji}$, $c = \bar{c}$;
- (iii) $\sum a_{ij}\xi_i\xi_j>0$ for all complex *n*-tuples $(\xi_1, \dots, \xi_n)\neq (0, \dots, 0)$ in a smooth bounded domain $G\subset E^n$. If the coefficients of (1) can be extended into a larger domain $G'\supset \overline{G}$ so that (i)-(iii) hold in \overline{G} as well as G, then we say that (1) is nonsingular in G. Points of ∂G at which such an extension is not possible comprise the singular boundary S.

For n = 1, these considerations will reduce to the well-known oscillation theory for the Sturm-Liouville equation

$$\frac{d}{dx}\left(a\,\frac{du}{dx}\right)+cu=0$$

on an interval G = (h, k). If x = h is a singular point and u(x) is a solution of (1'), then we have

DEFINITION 1. u(x) is oscillatory at x = h if, for every neighborhood N(h), u(x) has a zero in $G \cap N(h)$.

In extending this definition to solutions of (1), we restrict our attention to certain mild kinds of singularities on a single n-1 dimensional component S_i of S.

DEFINITION 2. We say that u(x) is weakly oscillatory at S_i if, for every open set $H \supset S_i$, u(x) has a zero in $H \cap G$.

DEFINITION 3. We say that u(x) is strongly oscillatory at S_i if, for every $x \in S_i$ and every neighborhood N(x), u(x) has a zero in $G \cap N(x)$.

To simplify statements of theorems we shall assume that a change of variables has effected the canonical situation¹ in which

Received by the editors December 24, 1962.

¹ That this canonical form can generally be attained has been shown by Mihlin [3].

$$G \subset \{x \mid x_n > 0\},$$

$$S_i \subset \{x \mid x_n = 0\},$$

$$a_{in} = a_{ni} = 0 \text{ for } i = 1, 2, \dots, n-1.$$

A principal tool will be the following Sturmian theorem for elliptic equations [1; 2].

THEOREM 1. Let u and v be solutions of the elliptic equations

(1)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij} \frac{\partial u}{\partial x_{i}} \right) + cu = 0,$$

(1a)
$$\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{i}} \left(\alpha_{ij} \frac{\partial v}{\partial x_{i}} \right) + \gamma v = 0$$

in a bounded domain $G \subset E^n$. If Γ is a domain satisfying $\overline{\Gamma} \subset G$ and if

- (i) the matrix $(\alpha_{ij}-a_{ij})$ is non-negative definite in $\bar{\Gamma}$,
- (ii) $c \geq \gamma$,
- (iii) v = 0 on $\partial \Gamma$,

then u(x) must have a zero in $\bar{\Gamma}$.

In order to get oscillation theorems for (1), we shall let \bar{x} denote the coordinates (x_1, \dots, x_{n-1}) and make use of equations of the form

(1b)
$$\frac{d}{dx_n} \left(\alpha(x_n) \frac{dv}{dx_n} \right) + \sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_j} \left(\alpha_{ij}(\bar{x}) \frac{\partial v}{\partial x_i} \right) + \gamma(x_n)v = 0$$

whose coefficients satisfy (i) and (ii) of Theorem 1. That is, we assume that in G

(i')
$$\sum_{i,j=1}^{n-1} (\alpha_{ij}(\bar{x}) - a_{ij}(x)) \xi_i \bar{\xi}_j \ge 0 \quad \text{for all } (\xi_1, \dots, \xi_{n-1}),$$
$$\alpha(x_n) - a_{nn}(x) \ge 0;$$
$$\alpha(x) \ge \gamma(x_n).$$

We shall also define $\mu_1(t)$ as the first eigenvalue of the boundary problem

$$-\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_j} \left(\alpha_{ij}(\bar{x}) \frac{\partial \phi}{\partial x_i} \right) = \mu \phi \quad \text{on} \quad G \cap \left\{ x \mid x_n = t \right\}.$$

$$\phi = 0 \quad \text{on} \quad \partial G \cap \left\{ x \mid x_n = t \right\},$$

and set $\mu_0 = \lim_{t\to 0} \sup \mu_1(t)$.

THEOREM 2. If for some $\epsilon > 0$ the equation

(3)
$$\frac{d}{dt}\left(\alpha(t)\frac{dw}{dt}\right) + \left[\gamma(t) - (\mu_0 + \epsilon)\right]w = 0$$

is oscillatory at t = 0, then every solution of (1) is weakly oscillatory at S_i .

PROOF. From the definition of μ_0 there exists a subset Σ of S_i which satisfies $\bar{\Sigma} \subset S_i$ and for which the boundary problem

(4)
$$-\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_i} \left(\alpha_{ij} \frac{\partial \theta}{\partial x_i} \right) = \nu \theta, \quad \theta = 0 \text{ on } \partial \Sigma,$$

has smallest eigenvalue $\nu_1(t) \leq \mu_0 + \epsilon$. Choose $\delta > 0$ so that the cylinder

$$\Gamma_{\delta} = \Sigma X \{ x \mid 0 < x_n \le \delta \}$$

is contained in G. In Γ_{δ} we use separation of variables to solve the equation (1b) subject to the boundary conditions v = 0 on $\partial \Gamma \cap G$. One such solution is of the form $v_1(x) = \theta_1(\bar{x})w(x_n)$, where θ_1 is the eigenfunction of (4) corresponding to $\nu_1(x_n)$ and w(t) is a solution of

$$\frac{d}{dt}\left(\alpha(t)\,\frac{dw}{dt}\right)-\,\nu_1(t)w\,+\,\gamma(t)w\,=\,0\,,$$

$$w(\delta) = 0$$

Since $-\nu_1(t) \ge -(\mu_0 + \epsilon)$ and since (3) is oscillatory at t = 0, Sturm's comparison theorem assures us that w(t) is also oscillatory at t = 0. Thus $v_1(x) = \theta_1(\bar{x})w(x_n)$ has a sequence of nodal domains of the form

$$\Gamma_k = \sum X \{ x \mid \delta_k < x_n < \delta_{k-1} \}$$

where $\delta_k \downarrow 0$. By Theorem 1, u(x) has a zero in each Γ_k . Thus u(x) is weakly oscillatory at S_i .

THEOREM 3. If for every real M the equation

(5)
$$\frac{d}{dt}\left(\alpha(t) \frac{dw}{dt}\right) + \left[\gamma(t) + M\right]w = 0$$

is oscillatory at t=0, then every solution of (1) is strongly oscillatory at S_i .

PROOF. Let $x_0 = (\bar{x}_0, 0)$ be a point of S_i and suppose there exists a neighborhood of x_0 for which $N(x_0) \cap G$ contains no zeros of u(x). Construct a cylinder $\Gamma' = \Sigma' X\{x \mid 0 < x \leq \delta\}$ so that $\bar{x}_0 \in \Sigma'$ and $\Gamma' \subset N(x_0) \cap G$. Let λ_1 denote the smallest eigenvalue of

(4')
$$-\sum_{i,j=1}^{n-1} \frac{\partial}{\partial x_i} \left(\alpha_{ij} \frac{\partial \psi}{\partial x_i} \right) = \lambda \psi, \quad \psi = 0 \text{ on } \partial \Sigma'.$$

Using separation of variables to solve (1b) subject to v=0 on $\partial \Gamma' \cap G$, we again find a solution of the form $v(x) = \psi_1(\bar{x})w(x_n)$, where $\psi_1(\bar{x})$ is the eigenfunction of (4') corresponding to λ_1 and w(t) satisfies

(6)
$$\frac{d}{dt}\left(\alpha(t)\frac{dw}{dt}\right) + \left[\gamma(t) - \lambda_1\right]w = 0.$$

By hypothesis, (6) is oscillatory at t=0, and v(x) again defines a sequence of nodal domains of the form

$$\Gamma_k' = \Sigma' X \{ x \mid \delta_k < x_n < \delta_{k-1} \}$$

where $\delta_k \downarrow 0$. By Theorem 1, u(x) vanishes in every Γ'_k .

BIBLIOGRAPHY

- 1. P. Hartman and A. Wintner, On a comparison theorem for self-adjoint partial differential equations of elliptic type, Proc. Amer. Math. Soc. 6 (1955), 862.
- 2. K. Kreith, A new proof of a comparison theorem for elliptic equations, Proc. Amer. Math. Soc. 14 (1963), 33.
- 3. S. G. Mihlin, Degenerate elliptic equations, Vestnik Leningrad. Univ. 9 (1954), no. 8, 19-48. (Russian)

University of California, Davis