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1. Introduction. Let 5 denote the solution space of a homogeneous

linear ordinary differential equation with constant coefficients. It is

well known that 51 is the span of a set of exponential monomials

(1.1) ¿»-V,       u = 1, • • • , m(X),       X = Xi,---,Xk.

Conversely, the span 5 of such a set of exponential monomials is a

solution space 5.

It is clear that a solution space S, or a span S, is translation in-

variant. In this note we discuss the converse:

Theorem. Every finite-dimensional translation invariant subspace W

of the continuous functions on (— oo , go)( or of the Schwartz distribu-

tions on (— <x>, <n),is the span of a set of exponential monomials of the

form (1.1).

Basically, this theorem is of course not new. Results of a related,

but much more general, kind are known in the theory of mean-

periodic functions (cf. Schwartz [6]). The point is, however, that our

proofs for the present situation are quite simple and have a number

of interesting features.

In our theorem it is not necessary to require explicitly that W con-

tain all translates of its elements. In fact, it will be sufficient to know

that for two fixed real numbers Si and s2 such that Si/s2 is irrational,

F(t + si) E W,       F(t + s2) E W,

whenever F(t) G IF (§3). Our result is valid also for finite-dimensional

subspaces of functions on the positive half-line which are invariant

under translation to the left. One can also extend the theorem to func-

tions and distributions in several dimensions.

There are applications of the theorem to linear difference-integral

equations [l], [2].

2. The method of proof. Let V be the vector space of all continuous

functions or all distributions on ( — oo, co ). By W we denote a transía'

tion invariant subspace of V of finite dimension n.
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We select a basis fi(t), • • • , fn(t) of W. For real s, the translates

fi(t+s) will again belong to W. Hence there exist unique complex

numbers a«(s) such that for — «></< oo,

n

(2.1) fi(t + s) = £ otiÁs)fÁt),       i - 1, ' • • , «•
y-i

It will be convenient to write this equation in matrix notation.

Denoting the column vector (/i(i)> • ■ • , fn(t)) hy f(t), we obtain

(2.2) f(t + s) = A(s)f(t),        -oo<î,/<oo.

By (2.2),

.... /(* + *)-/«)     ¿fr)-¿(0)
(2.3) -=-f(t),       s * 0.

Suppose for the moment that the matrix A (s) is differentiable at s = 0.

Then we can let s tend to zero and conclude that

(2.4) Df(t) = A'(0)f(t),        - oo < / < oo.

We shall give several proofs of the differentiability of A(s) in §3.

Equation (2.4) represents a homogeneous linear system of first

order differential equations with constant coefficients. If the/,-(£) are

continuous functions our derivation of (2.4) from (2.3) shows that

the derivatives Df{(t) exist and satisfy (2.4).

When the /,-(<) are distributions their derivatives exist as distribu-

tions and satisfy (2.4). It is easy to see (and well known; cf. [7, p.

129]) that (2.4) implies also in this case that the Dfi(t) are continuous

functions and the /,(<) differentiable. Indeed, as distributions the

Dfi(t) must, on a fixed finite open interval /, be derivatives of some

finite order p of continuous functions. For p ^ 1 the f((t) will then be

derivatives of continuous functions of order p—l, hence by (2.4) so

are the distributions Dfi(t). It follows that we may take p = 0. (The

same kind of argument shows that the functions /,(/) are actually of

class Cx.)

Now let Xi, • • • , X* be the distinct characteristic roots of the «X«

matrix ^4'(0). We denote their algebraic multiplicities by w(Xi), • • • ,

m(\k), so that

(2.5) m(\i) + • • ■ + m(\k) = ».

Then the components/,(<) of any solution/(i) of the system (2.4) are

linear combinations of the exponential monomials (1.1) correspond-

ing to these X's and m's (cf. [4, p. 75]). We conclude that the com-
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ponents of our particular vector f(t), that is, the basis elements fi(t)

of W, are linear combinations of the exponential monomials (1.1). Thus

IF is a subspace of the span S of these exponential monomials. How-

ever, dim W = n and by (2.5) also dim S — n. It follows that W is

exactly the span of the exponential monomials (1.1).

3. The differentiability of A(s). We shall give four proofs of the

differentiability. Only the first one makes essential use of the theory

of distributions. The third proof is valid just for the continuous func-

tion case. The others are appropriate for either case.

First Proof. Let us write (2.3) in component form:

fi(t + s) - fj(t)        ^ aij(s) - aij(0)
w-i) — /—i Ji\t)j

S ,«.1 5

î=l,   •••,»,—   CO   </<00.

Keeping i fixed for the moment, we denote the left-hand side of (3.1)

by gs(t)- As s—>0 the functions or distributions g,(t) will converge to

the distribution derivative Dft(t). However, the gs(t) are elements of

W. Since IF is a finite-dimensional subspace of the topological vector

space of all distributions, a sequence of elements of W converges if and

only if it is componentwise convergent, relative to the given basis

fi(t), - • • ,fn(t). We conclude that the "components"

aij(s) - a,y(0)

s

of g¡(t) tend to limits as s—>0. In other words, the functions cxíj(s) are

differentiable at 5 = 0!

Second Proof. Let Co denote the space of test functions on

(-co, oo) (the infinitely differentiable functions with compact sup-

port). We will show that there exist gi, • • • , gn in Co such that

/oo

figi = 5,3,       i,j = 1, ■ ■ ■ ,n.
-00

Let k^n, and consider the system of linear equations

/CO

fi4> = 0,    i = 1, • • • , k,    <p E C*.
-00

Because of the linear independence of the linear functionals /,• the

solution space Uk of the system (3.4) will have codimension k in C0°°.

Clearly [/„ C Un-i, and since the codimensions are different the inclu-
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sion is proper. It follows that there is an element gnEC0m which be-

longs to t/„_i but not to U„. In other words, fi(gn) = 0 for t — 1, • • • ,

n— 1, but f„(gn)^0. Normalizing gn we can make_f„(gn) equal to 1.

(One can give an even shorter proof by using the deeper result that

Cq is the dual of the space of distributions.)

Now let g(t) denote the column vector (gi(t), • • • , gn(t))- We

multiply both sides of (2.2) by the transpose gT(t), and integrate:

(3.5) ff(i + s)gT(t)dt = A(s) f   f(t)gT(i)dl.
J  -00 J  -00

Because of (3.3) the integral on the right reduces to the nXn identity

matrix. Thus

(3.6) A(s)=  f   f(t + s)gT(t)dl=  f   f(s - t)gH-t)dt.
J  -00 J  -OO

Since the convolution of the distribution /,-(i) and the test function

gj( — t) is a C°° function, we have amply demonstrated the differen-

tiability of the matrix A (s) !

Third Proof. (Continuous function case.) Since the functions

fi(t) are linearly independent, there exists a set of n points h, ■ ■ ■ , tn

such that the restrictions of the functions/»(i) to this set are linearly

independent. (One can prove this by induction; cf. also [3].) Set

t = h, •■ -, tn in (2.1) to obtain the matrix equation

B(s) = A(s)B(0),

where B(s) = [fi(t, + s)]. Since the matrix B(0) = [fi(t¡)] is invertible,

it follows that

(3.7) A (s) = B(s)B~i(0) = [¡¿ti + s)] ¡fi(tj)]~K

Hence, A (s) is continuous.

It follows directly from (2.2) and the uniqueness of A(s) that

A (si) A(s2) » A(si + s2) = A(s2 + ii) = A(s2)A(si).

Hence, the continuous matrices A (s) form a commutative semigroup.

This implies by a very simple argument (cf. [5, p. 283]) that A(s) is

differentiable.

Fourth Proof. Let

hi=fi*A,       h=f*A,

where A(t) is a test function. Then hiECx and, by (2.2),

(3.8) k(t + s) = A(s)h(t),        - » < s, t < oo.
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We remark that the test function A can be chosen in such a way that

hi, ■ • • , hn are linearly independent. For let A run through a sequence

of test functions which converges to the delta distribution 5. Then

hi =fi*A-+fi*ô = /,-,

from which one derives that the hi are linearly independent if A is

sufficiently close to 0.

We now proceed as in the first part of the third proof. Choose points

h, • ■ • , tn such that the matrix [hi(t/)] is invertible. Then, by (3.8),

(3.9) A (s) = [hi(tj + s)][hi(ti)]-K

Since hiECx, A(s) is infinitely differentiable.

4. Concluding remarks. For the moment let us suppose only that

the subspace IF of V, with basis fi(t), • • • , fn(t), is invariant under

the translation given by s = si. That is, we have (2.1) for s=si. The

translates fi(t+Si), i=l, ■ ■ ■ , n, will still be linearly independent

in V, hence the translation s = Si carries a basis of IF into a basis. It

follows that this translation defines a one-to-one linear mapping of

IF onto itself. But then the same is true for the inverse, hence IF is

also invariant under the translation given by 5= — si. One concludes

that IF is invariant under all translations s = riSi, where ri is an inte-

ger.

We now suppose that the subspace W of V is invariant under two

translations Si and s2 such that Si/s2 is irrational. By the above IF is

then invariant under all translations given by s = riSi+r2s2, where

rj and r2 are integers. That is, we have (2.1) for a set K of s which is

dense on ( — =0, co ). We will show that in this case W is invariant un-

der all translations. Indeed, if s' is any real number we can write s'

as a limit of elements sEK, and it follows that fi(t+s') is a limit of

elements fi(t + s) in IF. Since IF is finite dimensional it is closed, and

we conclude that fi(t+s')EW, i—l,---,n.

Minor changes in the proof of §2 show that our theorem is also

valid for subspaces of the continuous functions or distributions on

(0, 00) which are invariant under a sequence of translations s = sk,

k = 1, 2, ■ ■ ■  to the left such that sk j 0.

In the case of distributions in Rp the finite dimensional translation

invariant subspaces are spanned by exponential monomials of the

form

¿i     • • • tp    e
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