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Few, if any, of the properties enjoyed by ergodic measure-preserv-

ing transformations defined on a finite measure space generalize in a

natural way to those defined on an infinite measure space. Concrete

examples of ergodic transformations which preserve a finite measure

and ones which preserve an infinite measure exist in the literature,

see [l]. It is not difficult to see that ergodic transformations never

admit wandering sets of positive measure. In [2] it was shown that a

basic difference exists between ergodic transformations which pre-

serve a finite measure and those which preserve an infinite measure;

namely, an ergodic measure-preserving transformation defined on an

infinite measure space always admits weakly wandering sets of posi-

tive measure (Theorem 2 of [2]). Unlike wandering sets, it is not

true in general that the union of two weakly wandering sets is again

a weakly wandering set even if we require that a class of mutually

disjoint images of one weakly wandering set does not intersect a class

of mutually disjoint images of the other. One may ask then if there

are any ergodic measure-preserving transformations defined on an

infinite measure space which admit only weakly wandering sets of

finite measure. In this paper we show that this is not the case. We

prove that there always exist weakly wandering sets of infinite meas-

ure for any ergodic measure-preserving transformation defined on an

infinite measure space (Theorem 3). In [2] the existence of a weakly

wandering set of positive measure for an ergodic measure-preserving

transformation defined on an infinite measure space was discovered

while studying the necessary and sufficient conditions for the exist-

ence of a finite, invariant, and equivalent measure for a given meas-

urable and nonsingular transformation. In this paper we construct

the weakly wandering sets in a different way. Using the pointwise

ergodic theorem we prove a simple and yet a useful fact about ergodic

measure-preserving transformations defined on an infinite measure

space (Theorem 2). It states that given two sets A and B both of

finite measure, it is possible to find an image of A under some power

of the transformation T which has small intersection with the set B.

This fact is basic in proving Lemma 1 which shows the existence of a
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special kind of weakly wandering set within any set of finite measure.

The main result (Theorem 3) then follows from the lemma.

In what follows (X, (B, m) will represent a measure space. The

whole space X will be measurable, and when we mention an infinite

measure space we always assume that it is ^-finite ; that is, X = Uj" i A,-,

where m(At)<<x> for i=l, 2, • • • . By a measure-preserving trans-

formation T defined on a measure space (X, (&, m) we mean a one-to-

one map of X onto itself such that m(TB)=m(T~lB)=m(B) for

every BE<S>. T ergodic means that whenever TA=A then either

m(A) = 0 or m(X—A) = 0. By LX(X) we mean the class of all ab-

solutely integrable, real-valued functions defined on X.

The pointwise ergodic theorem states:

Theorem 1 (G. D. Birkhoff). Let Tbea measure-preserving trans-

formation defined on a finite or an infinite measure space (X, <S>, m).

If fELi(X), then the pointwise limit f*(x) =lim„^00 (1/n) ^"lo f(F'x)

exists almost everywhere, f*ELi(X), f*(Tx)=f*(x) almost everywhere,

and in case m(X) <<x> we have fxf*(x) m(dx) =fxf(x) m(dx).

For a proof we refer the reader to [l].

As a consequence of Theorem 1 we prove

Theorem 2. Let T be an ergodic measure-preserving transformation

defined on an infinite measure space (X, (B, m). Let A and B be two sets

with m(A) < oo and m(B) < co. Then given e>0 there exist arbitrarily

large positive integers «>0 such that m(TnAC\B) <e.

Proof. Given A and B with *»(.4)<oo and m(B)<<x>, let /a(x)

and gß(x) be the characteristic functions of A and B, respectively;

that is, fA(x) — l if xEA and equals 0 otherwise, gß(x) is defined

similarly. Since gß(x) is in Li(X) it follows from Theorem 1 that

íb(x) =hmn^«, (l/n)Y^i~o gB(T'x) exists almost everywhere; since

¿b(x) is an invariant function under the ergodic measure-preserving

transformation T, we conclude that gt(x) = constant almost every-

where. From the fact that g%(x) is an integrable function on (X, (B, m)

with m(X)=«> it follows that g%(x) = Q almost everywhere. Now

/a(x) is a bounded, non-negative, and integrable function; therefore,

applying the bounded convergence theorem and the fact that

(1/n) J2?~o f¿(x)gB(T{x) converges pointwise to fA(x)g*B(x), we

conclude that limn,w (1/n) ££"0 m(Ar\T~iB) = 0. This implies that

lim infBH.M m(TnAC\B) = 0, which proves the theorem.

A measurable set W is said to be weakly wandering (under the

transformation T) if there exists a sequence of integers

{«i:t' = 0, 1, 2, • • • } such that TniWr\Tn¡W=0 for i?¿j.
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Theorem 3. Let T be an ergodic measure-preserving transformation

defined on an infinite measure space (X, (&, m) ; then there exists a

weakly wandering set of infinite measure.

We first prove a lemma which shows the abundance of a special

kind of weakly wandering sets. We note that this lemma is quite

similar to Lemma 4 of [2] except that in order to use it in proving

the theorem, we state and prove it in the following sharpened version:

Lemma 1. Let T be an ergodic measure-preserving transformation de-

fined on an infinite measure space iX, <B, m). Let A be a measurable set

with 0<miA) < oo, and let e>0 be an arbitrary positive number with

e<miA). Then there exists a subset A' of A with miA')^e such that

the set W = A — A' is weakly wandering under a sequence

{w,:í = 0, 1, 2, • • • }. Furthermore, the set W and the sequence {»j}

have the following additional property:

(1) Tni+n!'W r\ Tn>'+n*W = 0 fori> h,j> k, and either i^jorh^k.

Proof. Let A be a measurable set with 0<a = m(^4)<oo, and

e>0 be an arbitrary positive number with e<miA). We let e* = e/2*

for k = l, 2, ■ ■ ■ , Ai^A, and w0 = 0. Since miA) < oo, by Theorem 2

we can choose wi>0 such that miTniAif~\A) =miTniAC\A) <ei. Next

we let Ni= {na}, N2= {n: — «i^«^wi}, and A2 = UieN, T'A. Since

miA2) < oo, again by Theorem 2 we can choose «2>Wi such that

miTn'A2r\ A) = m( U Tn^A C\ A J < e2.
V.eiVj /

Now suppose that 0<»i<w2< • • • <»*_i have been chosen, we

let Nk={n: —nt —w2— • • • — Mt_i^wg»i+n2+ ■ • • -\-nk-i}, and

Ak = \JieNh T*A. Again applying Theorem 2 we can choose nk>nk-\

such that

(2) w(r-M* H A) = m( U   T****A (~\ A ) < ek.
\iElfk I

Thus we can choose inductively an increasing sequence of positive

integers {nk} such that (2) is satisfied for k = l, 2, • • • .

Let

00

a' = u  u ?*+Mni
*-l «ew»

Then

miA') ̂ «     U   T»*+iA H A ) g X)«* = «•
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Next we show that the set W=A — A' has the desired properties.

H i¿¿j, without loss of generality we assume that i>j; then since

W=A-A' and Tni+nk-n>-nkWr\A CA', we conclude that

J'n.+ni-ny-n*^ C\W =  0.

If i=j and h^k, again we assume that h>k, and since Tnk-nkWC\A

QA ', we conclude that

Tnk-"kW C\W = 0.

It is easy to see from the above that

rni+BW f\ T"i+n*W = 0   lori>h,j> k, and either i^jorh^k.

Proof of Theorem 3. By Lemma 1 we construct a set W and a

sequence of integers {»,:i = 0, 1, 2, • • • } which satisfy (2). We let

C =    U   T*W.
i even

Since the sets T^W lor i even are mutually disjoint and m(W)>0,

we conclude that m(C) = °°. Furthermore, for h, k odd and h 9ek we

have
Tnkc n Tnkc =  U  r»»+»ip7 n u  r»*+nw

t even i even

=     (J    Tni+nkW H Tnk+n¡W.

i,i even

The last member of the above equation consists of a countable union

of elements of the form Tni+HhWr\Tn>+nkW, where i, j are even, h, k

are odd, and h^k.
The following five possible cases are exhaustive:

(i) i>h,j>k, and i?¿j.
(ii) i>h,j>k, i=j, and h^k.
(iii) h>i, k>j, and h^k.
(iv) i>h, k>j, and t^fe.
(v) h>i,j>k, and h^j.
For all the possible cases enumerated above we conclude from (1)

chat Tni+nhWr\Tni+nkW=0. This implies that TnkCC\TnkC=0 for

h^k; h, k odd. This proves that C is a weakly wandering set of in-

finite measure.
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