
SOME INEQUALITIES FOR POLYNOMIALS
AND THEIR ZEROS

ZALMAN RUBINSTEIN

This note is divided into two parts. In the first part we use some

results from the theory of schlicht functions to obtain inequalities in-

volving polynomials and their zeros. Also a new proof is given to a

result much used in the theory of polynomials. The second part con-

tains some estimates for the location of the zeros of linear combina-

tions of polynomials. A result due to Biernacki is sharpened and

generalized.

I. Lemma. Let

/(«) =---

n (i - *»)-
Denote e = maxiSiSn [ «¡b|, then

(a) If e^l and m^2/n, the function f(z) is regular and schlicht in

the unit disc.

(b) If m = 1, f(z) is regular and schlicht in the disc \z\ <l/(n—l)e.

In general this result cannot be improved.

Proof. For \z\ =r, we obtain :

dz L  \z k-i 1 - tkZ/J

nm m "         /l + e*z\

2 2 k-i       \1 — tkz)

nm m "   1 — I tk 12r2

2        2 *_i     1 — tkz 2

Now d argf(z)/dz>0 if \ek\ gl and l-nm/2^0, for all 0<r<l,

which proves (a) since A arg f(z) = 2t, when z describes a circle of

radius r in the politive direction. Similarly for m = l,

n      1   _    I eI2f2

(2) d argf(z)/dz > 0    if ^ i-LA~ > » - 2.
i=l    I 1 - tkZ \2

Since,
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1 -   |ei|2r2       1 -tR
min i-¡— ^->    f or r á R,

| 1 - ékz\2   - 1 + eR

(2) is satisfied if n(l-€Í?)/(l+€Í?)>»-2, or i?<l/e(«-l), which

yields (b). The example of Corollary 1(b) provides the final part of

the lemma.

Theorem 1. Let Piz) = anzn + • • • + aiz + c0 have zeros ak,

k=l, ■ ■ ■ , n, \ak\ £1, then P(z) =a„(z—a)", where |a(z)| <1, for

\z\ <1, and aiz) is a regular function in |z| >1.

Proof. By a reciprocal transformation it is necessary and sufficient

to prove

(3) n (i - *«*) = (i - «*)",
k-i

where |a(z)| <1 for \z\ <1.

For \z\ <1 we define aiz) by equation (3), choosing a single-valued

branch of the wth root. It is easy to see that aiz) is regular in \z\ < 1.

It remains to show that |a(z)| <1 in \z\ <1.

By the lemma, /(z) =z/(l —az)2 is regular and schlicht in the unit

disc. Since it is also normalized by the conditions/(0) =0,/'(0) = 1, it

follows by a well-known estimate [2], that

\z\ \z\ \z\(4) -!-<-—-<-—■-
(1+ |z|)2~ |l-az|2 " (1- |z|)2

It follows from (4) that |a(z)| <3 in \z\ <1.

Now since 1/(1— az) is regular in the disc \z\ <1, and the series

(5) -- 1 + az + iccz)2 + • • •
1 — az

converges for \z\ < 1/3, it follows that the series (5) converges for all

z, |z| <1. Suppose that there is a point z0, |z0| >1, such that

|a(zo)| >1, then by the maximum principle we may assume that

| Zoa(zo) | > 1 and we get a contradiction to the absolute convergence

of (5) at z0.

Theorem 2. Let YLlt-i (1—«*z) = (l—az)n, where \ak\ ^1, |a(z)|
£1, then

¿ |/S*|2(2A+l)íSl
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where the numbers ßk are the coefficients of the expansion in a Taylor

series of a(z) in \z\ <1.

Proof. Since/(z) = z/(1 — az)2 is regular, schlicht and normalized in

\z\ <1 the same is true for the function f2(z) = (f(z2))112. Define

F(z) = l/f2(l/z), then F(z) is schlicht in | z\ > 1 and has the expansion

1 1
F(z) = z-/3o-—/3i-

z z3

The theorem follows now by the area theorem for schlicht func-

tions.

The following corollary is deduced easily from the theorems proved.

Corollary 1. Let P(z) = ü"_i (1— akz), \ak\ £l/(n — l), then

(a) (l + |z|)2^|P(z)| ^(l-|z|)2/or \z\ £1.

(b) P(z)—zP'(z)¿¿0 for \z\ <1, and this result is the best possible

as the example P(z) =(l+z/(w — 1))" shows.

(c) // c is such that P(z) — z/c =^0 in \z\ g¡ 1, then

(1+ \z\)2=   P(z)--  fc(l- |z|)2
c

in \z\ al-

ia), (b) follow by the second part of the lemma, (c) follows from

the fact that the function cf(z)(c—f(z)) is schlicht and regular in

|z|<l, if f(z)=z/P(z).

II. Lemma. All the zeros of the polynomial

(z + eie)n — 1 — nz — • • • — I j z*-1

are in the disc \z\ gtp + lfor l^p<n-l; 0^d^2ir.

Proof. We use the inequality

(m + q\ (m + q\
j  J(i + i)+--- + ^ _lïj(? + i)î-l<r+5-

For m^3, q~è2, (6) was proved by Biernacki [l]. We prove (6)

for m = 2, q^2 and also indicate the proof for the other cases.

Let m ^2. It is easy to verify that

(m + q\ (m + q\ /m + q\

! >+-+(t-iK,<(,-i)(,+*)-'
for all* >0.
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Substituting x = q+l in (7), one deduces that (6) is true provided

(m + q\
) (9 + 2)*-1q-(n+q) <1.

Since w{m, q)/wim-\-l, q)>l for q> 1, it is enough to consider the

case m = 2. In this case after obvious transformations the equivalent

to (6) is the inequality (l+2/g)«+2<l + (l + l/s)5+1(V2+4/2).

Since (1+2/g)5 is increasing, and (l + l/g)4+1 is decreasing, it is

enough to show that (l + 2/g)2e2<l+e(5/2+4/g).

Set x = l+2/p, we get e2x2-2e3C<l+e/2, hence

x < (l/e)[l + (2 + e/2)1'2]    and   p > 2e[l + (2 + e/2)1'2 -e]~\

The remaining cases ip <50) can be verified directly.

The lemma follows now by applying Rouche's theorem, using (6).

It follows easily that on the circle |z| =£ + 1,

| z + eie|» > p» >   l + nz+ • • ■ + (    "   W1  •

It can be shown that the lemma is not true for p = n — 1. We prove

now

Theorem 3. If Piz)=anzn+ • ■ ■ -l-ao^O in \z\ <1, then the poly-

nomial P*(z)=P(z)-f-e„o„zn-|-€n-ian-iZ"_1+ • • • +e.n-p+iZn-p+l9iQin

|z|<l/(£ + l),/or |*| ¿1, k = n-p + l, •••,«; 1^^<k-1.

Proof. By a result due to Rahman [3], P*(z) ^0 in \z\ <l/t,

where t is the positive root of the equation

it- 1)"= 1 + «/+•• ■ + (   "   W».

By the lemma, with 6 = ir, k=p+l, t^p+1, hence l/t^l/^ + l).

Theorem 3 generalizes a result due to Biernacki [l], obtained for

i» = «n-l=   "  •   •   =in-j>+l== — I-
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