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Put

"   («z)r     inz)n

e"=Tl-j-+—^Saiz),
r=o    r\ n\

where « is a positive integer and z an arbitrary complex number.

Ramanujan [4, p. 26] asserted (in a different notation) that

n\/e\n       2 4 /1\
5.(1) = —( — )-+-+ 0( —)•

2 \nj        3      135»        \n2/

Copson [2] proved that {5„( — 1)} is a decreasing sequence with

limit —1/2 and derived an asymptotic series. In a recent paper,

Buckholtz [l] proved that, for Aiäl,

Sniz) = Ë (-) Uriz) + Oin-")
r=o \ n /

uniformly in a certain region of the z-plane. The coefficients U,iz)

are determined by

/    z       d\"    z
(1) Uriz) = (-l)r- -)--

\1 — z dz/ 1 — z

It follows from (1) that

Qriz)
(2) Uriz) = (-1)'-^^-,

(1 - z)2r+1

where, for r^l, <2r(z) is a polynomial of degree r with positive in-

tegral coefficients.

To find an explicit expression for i/r(z), we put

(3) F = F(z, t) = E Ukiz)lk/k\.
k=0

Then, by (1),
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(---)F=-Y,Uk,i(z)tk/kl
\1 — z dz/ k-o

dF
■ >

at

so that

z      dF      dF
(4)- -+-= 0.

1 — z   dz        dt

The system

1-2 dF
-dz = dt =-

z 0

has the particular integrals

F,       ze-*-'.

Hence (4) has the solution

(5) F = 4>(ze-'->),

where <p is arbitrary. Since

F(z,0)=-^-,
1 — z

it is evident that

z
(6) <p(ze~') =

1 - z

Now it is known [3, p. 126, no. 214] that

eaz oo       tn _|_      \„

-— = £ -—~ (ze-y.
1 — z     „=o        n\

It follows that

z °°   nn

(7) -— - £ - («-•)-.
1 — z     „=i »!

Comparing (7) with (6) it is clear that <f> is determined. Thus (5)

becomes

(8) F(z, I) = £ - («—')-•
n-i n\

We have therefore
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F(2,o = E-(^)rE(-Dr —
r=i  r! *~o A!

00 4k      oo        fT-\-h

= E(-D*-E—-(^-2)r,
t_o A! _i    r!

so that

oo     j-r+fc

um = (-i)'E-(«-')'
r=i   r!

We put

(9)

oo     ^r+fc oo T8Z*

= (-D*E— *'E (-i)*—
r=i   r!       s=o i!

= (-i)*E -E(-i)"-'( W-

Sin + A, n) = — E (-l)n-r (    ) rn+*
w! r=0 \r/

so that 5(w + A, n) is a Stirling number of the second kind [5, p. 33].

Thus

oo

(10) Ukiz) = (- l)k E zn 5(» + A, »)
J! = l

for all A = 0.

It follows from (2) and (10) that

co

Qkiz) = (1 - z)2k+l E zn5(« + A, »).
n=l

If we put

(11) Qkiz) = E <**»*"      (* ^ 1),
n=l

it is clear that

n /2k +  1\
(12) ^n=E(-l)J'(      .      )Sin-j + k,n-j).

i-o \     J      /

For example, since
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we find that

a« = 1       (k^ 1),

a« = 5(2 + *, 2) - (2k + 1)5(1 + *, 1)

= i(2*+2 - 2) - (2* + 1)

= 2*+J - 2(k + 1),

ak3 = 5(3 + ¿, 3) - (2k + 1)5(2 + A, 2) + ( * + *W + k, 1)

(2k + 1\
= |(33+* - 3 • 23+* + 3) - (2k + 1)(2*+» - 1) + ( J

= K3m + 1) - (2k + 3)2k+* + (2k + l)(k + 1).

In particular we have

6i(«) = 2,        &(*) - 2 + 2z2,       Qz(z) = z + 8z2 + 6z3

in agreement with Buckholtz.

It follows from (1) and (2) that

(13) Qk+i(z) = (2k + l)zQk(z) - z(z - l)Qk' (z).

Combining (13) with (11) we get the recurrence

(14) akn = won.» + (2k — n)ak-i,n-i,

from which it is clear that the akn are positive integers for 1 ^ n ^ k.

By means of (14) we can easily compute the following table.

1

1 2

1 8     6

1 22    58    24

1 52   328   444   120

1 114   1452  4400  3708  720

As a check we note that

Q»(l) = t«b = 1-3-5 • -.(2Ä-1);
n-i

this is an immediate consequence of (13).
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ON CLASSES OF UNIVALENT CONTINUED FRACTIONS

T. L. HAYDEN1 AND E. P. MERKES2

1. Introduction. From results of Leigh ton and Scott [3], there is

a unique one-to-one correspondence between formal power series

w~1+^,ñ-2 cnw~n and C-fractions

1        ai        at a„
(1.1) P(»)--     —     —      •••      —      ••-,

w — w°' — U)1   — — w n —

where 8n is an integer, Si^O, 5n+i+5nj^ l.and a„+p = 0 whenever ap = 0

for n = l, 2, ■ ■ • . For a fixed continued fraction (1.1), let KF denote

the class of formal power series which correspond to C-fractions of the

form

(1.2)
1        aí       ai an'

w — w>x — w8* — — w>n

where \an\ ^ \an\, n = l, 2, • ■ • . In order that each power series in

Kp represent an analytic function in | w\ S: 1 it is necessary and suffi-

cient that |a„| ^g„(l— gn-i), where 0<g„_i^l, »=1, 2, • • • , and

gp_i= 1 if and only if ap = 0[2, p. 374]. Conditions on the parameters

g„ of the chain sequence  {g«(l — gn-i) }n=i which imply that each
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