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0. Introduction. Let X be a subspace of C(H) which contains the

subspace CX(H, A) of functions in C(H) which vanish on the subset

A of H. In this note we examine when X is a direct factor of C(H).

In particular, if X=CX(H, A), it is shown that X is a direct factor of

C(H) if and only if there is a continuous linear mapping E: C(A)

—*C(H) such that Ef is an extension of / for each / in C(A). If P is a

continuous projection of C(H) onto X it is shown, under fairly gen-

eral conditions, that the complementary projection, I — P, must

have norm ||P|| — 1 (Theorem 2 below).

These results are used to study certain spaces (C(K), P\). In par-

ticular, let X be the space of functions in C(H) which are constant

on A. If C(H) is a Pi-space and if X is a Px-space it is shown that

C(A) is a Px-space. It is further shown (Theorem 3 below) that C(A)

then contains an isometric copy of m, the space of bounded sequences.

This result is used to show that certain subspaces of m are isomorphic

to m.

1. Notation and examples. Throughout this paper H is a compact

Hausdorff space and A is a closed subspace. If the closure of each

open set is open then H is said to be extremally disconnected. The

Banach space of continuous functions on H with the supremum norm

is called C(H). The subspace of C(H) of functions constant on A

will be denoted by C(H, A) while CX(H, A) stands for the subspace

of functions vanishing on A. If C(H) is a direct factor of every

Banach space Z containing C(H), that is, if one can always write

Z = C(H) ffi Y for some closed subspace F of such Z, then C(H) is

called a P-space. Thus if C(H) is a P-space there is always a continu-

ous projection P from ZZ)C(H) onto C(H). If ||P|| =X is always pos-

sible, say that C(H) is a Px-space and write (C(H), P\). Every P-

space is a Px-space for some X and C(H) is a Px-space if and only if

for every Z{2>Z2 and T: Z2-^C(H), T a continuous linear mapping,

there is an extension Tu Zi—>C(H) such that ||Ti|| áX||P|| [3, pp. 94,

95]. Kelley [7] has shown that (C(H), Pi) if and only if H is ex-
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tremally disconnected. Thus w, the space of bounded sequences, is

easily seen to be a Pi-space. Grothendieck [5, p. 169] has shown that

an infinite-dimensional separable Banach space is not a P-space while

Phillips [9, p. 539] proved earlier there was no continuous projection

from w onto c, the space of convergent sequences, and hence no

projection of w onto c0, the space of sequences converging to zero.

Two Banach spaces are said to be isomorphic if there is a one-to-

one continuous linear mapping from one onto the other (with a con-

tinuous inverse) and isometric if this mapping preserves norm.

Example 1. Let 5 be an extremally disconnected Hausdorff space

and let K = SVJ { °° } be its one-point compactification, which we

assume is Hausdorff. In [l] Amir has studied such CiK) when CiK)

is a Px-space; and CiK) is completely characterized if X<3. Let H

be the Stone- Cech compactification of 5. Then H is extremally dis-

connected and the space CiH, A) is isometric to CiK) and is then

Px if CiK) is. For any H, the space CiH, A) is isometric to CiK),

where K is the one-point compactification of H—A.

Example 2. Let (5, 2, p) be a nonatomic finite measure space

and let M be the space of bounded measurable functions on S with

the supremum norm. Let Mx be the essentially bounded measurable

functions identified, as usual, off null measure sets, with the essential

supremum norm. Then M is isometric to a CiH) space. The measure

p corresponds to a Radon measure v on H and jsfis) dpis)

=¡Hgih) dvih) if / in M corresponds to g in CiH) under the isometry

above. Let A be the support of v (see [2, p. 70]). Then A is closed in

H (and is a category-one set). Two functions in CiH) correspond to

functions in the same equivalence class in M if and only if they agree

on A. The space Mx is isometric to CiA) and A is extremally dis-

connected.

A. Ionescu Tulcea and C. Ionescu Tulcea have shown there is a

norm-one linear mapping T: MX—*M such that Tf is in the equiva-

lence class {/} for every {/} EMK [l0]. Translating to CiH) there is a

norm-one linear mapping E from CiA) to CiH) which extends each

/ in CiA) to a g in CiH) ; that is, g (A) =/(A) if A is in A. Let R: CiH)
—*CiA) be the restriction mapping Rfia) =/(a) for every a in A. For

each g in CiH) let Pg = g—ERg. Then P is a norm-two projection of

CiH) onto Coo(ii, A), the subspace of CiH) isometric to the space of

/¿-null functions.

2. The equation CiH) = C„iH, A)® Y. In general, for any H, A,

if there is a linear continuous mapping E: CiA)—*CiH) which ex-

tends each/ in CiA) to Ef in CiH), then there is a projection P oí
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C(H) onto C„(H, A), P = I—ER, where R is the restriction mapping

defined above.

Theorem 1. C(H) = CK(H, A) @Y if and only if the extension map-

ping E exists from C(A) to C(H). The space Y is isomorphic to C(A).

Proof. That E implies C(H) = CX(H, A) © F is shown above. Now

let P be a continuous projection of C(H) onto CX(H, A) and let F

be the subspace of / in C(H) for which Pf = 0. Clearly R is linear and

||2?|| = 1. We shall show that R is an isomorphism of Y with C(A).

Then i?-1 is continuous and let E = R_1. If g is in C(A) and if / is

an extension of g, let/=/oo+y, where/«, is in CX(H, A) and y is in F.

Then Ry = g so R: F—>C(A) is onto. If Ry = 0, then y vanishes on A

and so y is in CK(H, A) also. Thus y is the 0 element of C(H) and so

R is one-to-one. The open mapping theorem ends the proof ; however,

the following computation is sufficient and useful. Assume ||y | =1,

and ||i?y|| <1/||P|], let x agree with Ry on A, have norm 1/||P|| and

have value — 1/||P|| where y = l. Then ||y — x|| =1 + 1/||P|| and y — x

is in CX(H, A). But ||P|| ||x|| =1 ^||Px|| =||P(y-x)|| =||y-x|| =1

+ 1/||p||, since Py = 0 and y — x is in CX(H, A). This contradiction

shows ||i?y|| è(l/||P||) IMI for each y. Q.E.D.
From the proof of Theorem 1 one easily proves the following.

Corollary 1. Let X be a subspace of C(H) which contains CX(H, A)

and suppose one can write C(H) =X®Y where X and Y are closed.

Then R restricted to Y is an isomorphism of Y into C(A). If Yi = R(Y),

then Yi is a direct factor of C(A).

Theorem 2. With the hypothesis of Corollary 1 let P be the indicated

projection of C(H) onto X. Suppose also that H is totally disconnected

and that A is nowhere dense. Then the complementary projection of

C(H) onto Y has norm ||P||-1. That is, \\l-P\\=\\P\\-l.

Proof. Let ||/—P||=Xèl. Let e>0 and choose/ in C(H) such

that ||/|| = 1 and such that ||(7—P)/|| >X —e. Because A is nowhere

dense, there is a point A in H — A such that |(I —P)/(A)| >X — 2e.

Without loss of generality, assume (I — P)/(A)>X — 2e.

Since H is totally disconnected, we may find an open and closed

neighborhood U of A which does not meet A. Define fi by /i = 1 +/

on U and/i = 0 off U. Let g=fi~Pf. Since/i is in CX(H, A), we have

that P/i=/i, and so Pg = g. Consider the function g—(I—P)f which

is 1 on U, -f off U, and has norm 1. Then P(g-(I-P)f)=Pg = g.

Since ||g||^|g(A)| = 11+/(A)-P/(A)| >l+X-2e, we have ||P||^1
+X-2e. Q.E.D.
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Corollary 2. With the hypotheses of Theorem 2, if \\P\\ <2 then
X=CiH).

Proof. ||i"-P|| <1 so that I-P is the 0 projection, or I = P.

3. The equation CiH) = CiH, A)@Y. Throughout this section, S

is a locally compact, extremally disconnected Hausdorff space and

H is the Stone-Cech compactification of S. Let A =H—S.

If K is a Hausdorff compactification of S, then CiK) is isometric

to a sublattice of CiH) containing CxiH, A). In particular, if K is the

one-point compactification of S, then CiK) is isometric to CiH, A).

The isometry may be constructed as follows. Let p be a continuous

function from H onto K. Let T: CiK)—>CiH) be defined by setting,

for each/ in CiK), TfQi) =/(p(A)) for every A in H.

Since (C(iT), Pi), one concludes from Corollary 2 that the condi-

tions iCiK), P\) and X<2 together imply that CiK) is a Pi-space.

This result is proved by Amir in [l], where it is also shown that if

iCiK), P\), then K is a compactification of such an S.

Corollary 3. If K is an extremally disconnected compactification

of S, then K is homeomorphic to H.

Proof. Let T be the isometry defined above and let X= F(C(ii)).

If P is a projection of CiH) onto X with ||P[| =1, then \\l-P\\ =0 so

that I = P. Thus X — CiH) from which it easily follows that p is a

homeomorphism.

Corollary 4. If K is the one-point compactification of S and if

iCiK), Px), then idA), Px).

Proof. Since CiK) is isometric to CiH, A), CiH, A) is a Px-space.

Then CM(ii, A) is a Px+i-space, and write CiH) = CiH, A) @ Y. Let

R be the restriction mapping of F onto CiA) and E the inverse map-

ping (as in the proof of Theorem 1). If Z is a Banach space contain-

ing CiA), the mapping E: CiA)-+CiH) has an extension T: Z-+CÍH)

such that ||r|| =||jE||. Then RT is a projection of Z onto CiA) and

||i?r||g||i?|| ||r||=||£||. Now ER = I-P, where P is the indicated

projection of CiH) onto C„iH, A). Hence ]|£i?|| =||/-P|| gX+1-1

= X if ||P||áX-H, by Theorem 2. It remains to show ||£|| =||£i?||. Let

/be in C(X) and ||/|| = 1. Let£g=/and ||g||=l. Then ERg = £/ and

we conclude that ||£i?|| is as large as ||£||.

Corollary 5. If iCKiH, A), P\) and if X<3, then CiA) is a Pr
space.

Proof. Using the proof of Corollary 4, ||£|| =||£i?|| =X-1<2, and

so iCiA), Px-i). The remarks preceding Corollary 3 conclude the

proof.
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Theorem 3. CiA) contains an isometric image of m, the space of

bounded sequences, if A is infinite.

To prove Theorem 3 we require two lemmas. The first is Theorem 1

in [l] for which we give a different proof.

Lemma 1 (Amir). If Bisa compact Hausdorff space and if (C(5), Px),

then no infinite sequence of distinct points in B converges.

Proof. Let bn be such a sequence and suppose b„—>b. Without loss

of generality, assume bn = b for no n. Then we may find a sequence

of mutually disjoint open sets { Un} such that bn is in Un for eachn.

Let/« vanish off Un and ||/„|| =l=/n(&»), for each n. Then c0 is em-

bedded isometrically in CiB) by letting the sequence {tn} in c0 cor-

respond to the function Ei°° *"/» m CiB). For each / in CiB), let

Pf— E" (/(&„) —fib))fn- Then P is a continuous projection of CiB)

onto a subspace isometric to c0, contradicting Phillips' result that c0

is not a Px-space [9].

Corollary 6. If B contains an infinite sequence of distinct points

which converges, then CiB) has a direct factor which is isometric to Co.

Lemma 2. H contains a mutually disjoint sequence of open and closed

sets { Vn} such that for each n, Vn!~\A is nonempty.

Proof. Fix ax in A and let Ui be a neighborhood of ax such that

A — Ui is infinite (if no such Ui exists, every sequence in A converges

to Oi, contradicting Lemma 1). Let/i in CiA) vanish on A — Ui and

||/i|| = 1 =/i(ai). Let gi be an extension to CiH) of /i and ||gi|| = 1. The

closure Vi of the set {A|gi(A)>j} is open and closed, and intersects

A in a set Wi which contains ai and is open and closed in A. More-

over, A — Wi is open, closed and infinite. Suppose mutually disjoint

open and closed sets V\, • • • , F„_i are chosen, each meeting A, in

nonempty Wi, • • • , Wn-i, and that A — U?_1 W¡ is infinite. Choose

an in A — Uî-1 Wj and a neighborhood Un of an contained in A — U?-1 W¡

such that A — U?-1 Wj— U„ is infinite. (If no such Un exists, every

sequence in A— U?-1 Wj converges to an.) Let/„ in CiA) vanish off

Un and ||/„|] = l=/„(a„). Let g„ be an extension of /„ to CiH). The

closure of |A|gn(A)>|} is open and closed in H. Its intersection

with H—Uï_1 Wj is an open and closed set V„ which meets A in non-

empty Wn. Moreover, A — U? W¡ is infinite. By induction the desired

sequence exists.

From the proof we have

Corollary 7. If B is an infinite closed subspace of H then CiB) con-

tains an isometric copy of m.
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Proof. No subsequence in B converges since H is extremally dis-

connected. Then use the proof of Lemma 2.

Proof of Theorem 3. Following James [6, p. 900] (see also [4,

p. 390]) m is embedded isometrically in C(H) as the subspace m of

functions constant on each F< and if / corresponds to the sequence

ti, then /(A) = /< if A is in F¿. R restricted to m embeds m isometrically

in C(A).

Corollary 8. If H=ß(N), the Stone-Cech compactification of the

positive integers N, if AEß(N)-N, and if (C(H, A), Px), then C(A)
is isomorphic to m.

Proof. C(H) is isometric to m and E: C(A)-^C(H) is an isomor-

phism into. By Theorem 3, m is isometric to a subspace of C(A). Thus

dimi (C(A)) =dimj (m). By the corollary to Theorem 6 in [4] (or see

[7]), since (C(A), Px) for some X, m and C(A) are isomorphic.

Theorem 4. With the hypotheses of Corollary 8, C(H, A) and

Cn(H, A) are isomorphic to m.

Proof. Since both are P-spaces and subspaces of C(H), it is enough

to show m is isometric to a subspace of Ca(H, A). Now A ¿¿ß(N) — N

since CK(H, ß(N)-N)=c0. Let h be in ß(N)-N-A. Let V be an

open and closed neighborhood of A not meeting A. Then Fis infinite,

containing an infinite number of integers; and Ca(H, H — V)

ECX(H, A). Since (C«,(H, H— V), Pi), it contains an isometric copy

of m [6].
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