SUBSPACES OF C(H) WHICH ARE DIRECT FACTORS OF $C(H)^1$

DAVID W. DEAN

0. **Introduction.** Let X be a subspace of C(H) which contains the subspace $C_{\infty}(H, A)$ of functions in C(H) which vanish on the subset A of H. In this note we examine when X is a direct factor of C(H). In particular, if $X = C_{\infty}(H, A)$, it is shown that X is a direct factor of C(H) if and only if there is a continuous linear mapping $E: C(A) \to C(H)$ such that Ef is an extension of f for each f in C(A). If F is a continuous projection of C(H) onto X it is shown, under fairly general conditions, that the complementary projection, I-P, must have norm $\|P\|-1$ (Theorem 2 below).

These results are used to study certain spaces $(C(K), P_{\lambda})$. In particular, let X be the space of functions in C(H) which are constant on A. If C(H) is a P_1 -space and if X is a P_{λ} -space it is shown that C(A) is a P_{λ} -space. It is further shown (Theorem 3 below) that C(A) then contains an isometric copy of m, the space of bounded sequences. This result is used to show that certain subspaces of m are isomorphic to m.

1. Notation and examples. Throughout this paper H is a compact Hausdorff space and A is a closed subspace. If the closure of each open set is open then H is said to be extremally disconnected. The Banach space of continuous functions on H with the supremum norm is called C(H). The subspace of C(H) of functions constant on A will be denoted by C(H, A) while $C_{\infty}(H, A)$ stands for the subspace of functions vanishing on A. If C(H) is a direct factor of every Banach space Z containing C(H), that is, if one can always write $Z = C(H) \oplus Y$ for some closed subspace Y of such Z, then C(H) is called a P-space. Thus if C(H) is a P-space there is always a continuous projection P from $Z \supset C(H)$ onto C(H). If $||P|| \leq \lambda$ is always possible, say that C(H) is a P_{λ} -space and write $(C(H), P_{\lambda})$. Every Pspace is a P_{λ} -space for some λ and C(H) is a P_{λ} -space if and only if for every $Z_1 \supset Z_2$ and $T: Z_2 \to C(H)$, T a continuous linear mapping, there is an extension $T_1: Z_1 \rightarrow C(H)$ such that $||T_1|| \le \lambda ||T||$ [3, pp. 94, 95]. Kelley [7] has shown that $(C(H), P_1)$ if and only if H is ex-

Presented to the Society, April 20, 1964; received by the editors August 29, 1963 and, in revised form, October 25, 1963.

¹ This research was supported by the United States Air Force under Grants AF AFOSR 61-51 and 62-162, monitored by the Air Force Office of Scientific Research of the Air Research and Development Command.

tremally disconnected. Thus m, the space of bounded sequences, is easily seen to be a P_1 -space. Grothendieck [5, p. 169] has shown that an infinite-dimensional separable Banach space is not a P-space while Phillips [9, p. 539] proved earlier there was no continuous projection from m onto c, the space of convergent sequences, and hence no projection of m onto c_0 , the space of sequences converging to zero.

Two Banach spaces are said to be isomorphic if there is a one-toone continuous linear mapping from one onto the other (with a continuous inverse) and isometric if this mapping preserves norm.

EXAMPLE 1. Let S be an extremally disconnected Hausdorff space and let $K = S \cup \{\infty\}$ be its one-point compactification, which we assume is Hausdorff. In [1] Amir has studied such C(K) when C(K) is a P_{λ} -space; and C(K) is completely characterized if $\lambda < 3$. Let H be the Stone-Čech compactification of S. Then H is extremally disconnected and the space C(H, A) is isometric to C(K) and is then P_{λ} if C(K) is. For any H, the space C(H, A) is isometric to C(K), where K is the one-point compactification of H - A.

Example 2. Let (S, Σ, μ) be a nonatomic finite measure space and let M be the space of bounded measurable functions on S with the supremum norm. Let M_{∞} be the essentially bounded measurable functions identified, as usual, off null measure sets, with the essential supremum norm. Then M is isometric to a C(H) space. The measure μ corresponds to a Radon measure ν on H and $\int_S f(s) \, d\mu(s) = \int_H g(h) \, d\nu(h)$ if f in M corresponds to g in C(H) under the isometry above. Let A be the support of ν (see [2, p. 70]). Then A is closed in H (and is a category-one set). Two functions in C(H) correspond to functions in the same equivalence class in M if and only if they agree on A. The space M_{∞} is isometric to C(A) and A is extremally disconnected.

A. Ionescu Tulcea and C. Ionescu Tulcea have shown there is a norm-one linear mapping $T: M_{\infty} \to M$ such that Tf is in the equivalence class $\{f\}$ for every $\{f\} \in M_{\infty}$ [10]. Translating to C(H) there is a norm-one linear mapping E from C(A) to C(H) which extends each f in C(A) to a g in C(H); that is, g(h) = f(h) if h is in A. Let $R: C(H) \to C(A)$ be the restriction mapping Rf(a) = f(a) for every a in A. For each g in C(H) let Pg = g - ERg. Then P is a norm-two projection of C(H) onto $C_{\infty}(H, A)$, the subspace of C(H) isometric to the space of μ -null functions.

2. The equation $C(H) = C_{\infty}(H, A) \oplus Y$. In general, for any H, A, if there is a linear continuous mapping $E: C(A) \rightarrow C(H)$ which extends each f in C(A) to Ef in C(H), then there is a projection P of

C(H) onto $C_{\infty}(H, A)$, P = I - ER, where R is the restriction mapping defined above.

THEOREM 1. $C(H) = C_{\infty}(H, A) \oplus Y$ if and only if the extension mapping E exists from C(A) to C(H). The space Y is isomorphic to C(A).

PROOF. That E implies $C(H) = C_{\infty}(H, A) \oplus Y$ is shown above. Now let P be a continuous projection of C(H) onto $C_{\infty}(H, A)$ and let Y be the subspace of f in C(H) for which Pf = 0. Clearly R is linear and $\|R\| = 1$. We shall show that R is an isomorphism of Y with C(A). Then R^{-1} is continuous and let $E = R^{-1}$. If g is in C(A) and if f is an extension of g, let $f = f_{\infty} + y$, where f_{∞} is in $C_{\infty}(H, A)$ and y is in Y. Then Ry = g so $R: Y \to C(A)$ is onto. If Ry = 0, then y vanishes on A and so y is in $C_{\infty}(H, A)$ also. Thus y is the 0 element of C(H) and so R is one-to-one. The open mapping theorem ends the proof; however, the following computation is sufficient and useful. Assume $\|y\| = 1$, and $\|Ry\| < 1/\|P\|$, let x agree with Ry on A, have norm $1/\|P\|$ and have value $-1/\|P\|$ where y = 1. Then $\|y - x\| = 1 + 1/\|P\|$ and y - x is in $C_{\infty}(H, A)$. But $\|P\| \|x\| = 1 \ge \|Px\| = \|P(y - x)\| = \|y - x\| = 1 + 1/\|P\|$, since Py = 0 and y - x is in $C_{\infty}(H, A)$. This contradiction shows $\|Ry\| \ge (1/\|P\|) \|y\|$ for each y. Q.E.D.

From the proof of Theorem 1 one easily proves the following.

COROLLARY 1. Let X be a subspace of C(H) which contains $C_{\infty}(H, A)$ and suppose one can write $C(H) = X \oplus Y$ where X and Y are closed. Then R restricted to Y is an isomorphism of Y into C(A). If $Y_1 = R(Y)$, then Y_1 is a direct factor of C(A).

THEOREM 2. With the hypothesis of Corollary 1 let P be the indicated projection of C(H) onto X. Suppose also that H is totally disconnected and that A is nowhere dense. Then the complementary projection of C(H) onto Y has norm ||P||-1. That is, ||I-P||=||P||-1.

PROOF. Let $||I-P|| = \lambda \ge 1$. Let $\epsilon > 0$ and choose f in C(H) such that ||f|| = 1 and such that $||(I-P)f|| > \lambda - \epsilon$. Because A is nowhere dense, there is a point h in H-A such that $||(I-P)f(h)|| > \lambda - 2\epsilon$. Without loss of generality, assume $(I-P)f(h) > \lambda - 2\epsilon$.

Since H is totally disconnected, we may find an open and closed neighborhood U of h which does not meet A. Define f_1 by $f_1=1+f$ on U and $f_1=0$ off U. Let $g=f_1-Pf$. Since f_1 is in $C_{\infty}(H,A)$, we have that $Pf_1=f_1$, and so Pg=g. Consider the function g-(I-P)f which is 1 on U, -f off U, and has norm 1. Then P(g-(I-P)f)=Pg=g. Since $||g|| \ge |g(h)| = |1+f(h)-Pf(h)| > 1+\lambda-2\epsilon$, we have $||P|| \ge 1+\lambda-2\epsilon$. Q.E.D.

COROLLARY 2. With the hypotheses of Theorem 2, if ||P|| < 2 then X = C(H).

PROOF. ||I-P|| < 1 so that I-P is the 0 projection, or I=P.

3. The equation $C(H) = C(H, A) \oplus Y$. Throughout this section, S is a locally compact, extremally disconnected Hausdorff space and H is the Stone-Čech compactification of S. Let A = H - S.

If K is a Hausdorff compactification of S, then C(K) is isometric to a sublattice of C(H) containing $C_{\infty}(H,A)$. In particular, if K is the one-point compactification of S, then C(K) is isometric to C(H,A). The isometry may be constructed as follows. Let ρ be a continuous function from H onto K. Let $T: C(K) \rightarrow C(H)$ be defined by setting, for each f in C(K), $Tf(h) = f(\rho(h))$ for every h in H.

Since $(C(H), P_1)$, one concludes from Corollary 2 that the conditions $(C(K), P_{\lambda})$ and $\lambda < 2$ together imply that C(K) is a P_1 -space. This result is proved by Amir in [1], where it is also shown that if $(C(K), P_{\lambda})$, then K is a compactification of such an S.

COROLLARY 3. If K is an extremally disconnected compactification of S, then K is homeomorphic to H.

PROOF. Let T be the isometry defined above and let X = T(C(H)). If P is a projection of C(H) onto X with ||P|| = 1, then ||I-P|| = 0 so that I = P. Thus X = C(H) from which it easily follows that ρ is a homeomorphism.

COROLLARY 4. If K is the one-point compactification of S and if $(C(K), P_{\lambda})$, then $(C(A), P_{\lambda})$.

PROOF. Since C(K) is isometric to C(H, A), C(H, A) is a P_{λ} -space. Then $C_{\infty}(H, A)$ is a $P_{\lambda+1}$ -space, and write $C(H) = C_{\infty}(H, A) \oplus Y$. Let R be the restriction mapping of Y onto C(A) and E the inverse mapping (as in the proof of Theorem 1). If E is a Banach space containing E in E in E in E in E is a projection of E onto E in E in E in E in E in E is a projection of E onto E in E

COROLLARY 5. If $(C_{\infty}(H, A), P_{\lambda})$ and if $\lambda < 3$, then C(A) is a P_1 -space.

PROOF. Using the proof of Corollary 4, $||E|| = ||ER|| = \lambda - 1 < 2$, and so $(C(A), P_{\lambda-1})$. The remarks preceding Corollary 3 conclude the proof.

THEOREM 3. C(A) contains an isometric image of m, the space of bounded sequences, if A is infinite.

To prove Theorem 3 we require two lemmas. The first is Theorem 1 in [1] for which we give a different proof.

LEMMA 1 (AMIR). If B is a compact Hausdorff space and if $(C(B), P_{\lambda})$, then no infinite sequence of distinct points in B converges.

PROOF. Let b_n be such a sequence and suppose $b_n \rightarrow b$. Without loss of generality, assume $b_n = b$ for no n. Then we may find a sequence of mutually disjoint open sets $\{U_n\}$ such that b_n is in U_n for each n. Let f_n vanish off U_n and $||f_n|| = 1 = f_n(b_n)$, for each n. Then c_0 is embedded isometrically in C(B) by letting the sequence $\{t_n\}$ in c_0 correspond to the function $\sum_{1}^{\infty} t_n f_n$ in C(B). For each f in C(B), let $Pf = \sum_{1}^{\infty} (f(b_n) - f(b)) f_n$. Then P is a continuous projection of C(B) onto a subspace isometric to c_0 , contradicting Phillips' result that c_0 is not a P_{λ} -space [9].

COROLLARY 6. If B contains an infinite sequence of distinct points which converges, then C(B) has a direct factor which is isometric to c_0 .

LEMMA 2. H contains a mutually disjoint sequence of open and closed sets $\{V_n\}$ such that for each n, $V_n \cap A$ is nonempty.

PROOF. Fix a_1 in A and let U_1 be a neighborhood of a_1 such that $A - U_1$ is infinite (if no such U_1 exists, every sequence in A converges to a_1 , contradicting Lemma 1). Let f_1 in C(A) vanish on $A - U_1$ and $||f_1|| = 1 = f_1(a_1)$. Let g_1 be an extension to C(H) of f_1 and $||g_1|| = 1$. The closure V_1 of the set $\{h \mid g_1(h) > \frac{1}{2}\}$ is open and closed, and intersects A in a set W_1 which contains a_1 and is open and closed in A. Moreover, $A - W_1$ is open, closed and infinite. Suppose mutually disjoint open and closed sets V_1, \dots, V_{n-1} are chosen, each meeting A, in nonempty W_1, \dots, W_{n-1} , and that $A - \bigcup_{i=1}^{n-1} W_i$ is infinite. Choose a_n in $A - \bigcup_{i=1}^{n-1} W_i$ and a neighborhood U_n of a_n contained in $A - \bigcup_{i=1}^{n-1} W_i$ such that $A - \bigcup_{i=1}^{n-1} W_i - U_n$ is infinite. (If no such U_n exists, every sequence in $A - U_1^{n-1} W_1^1$ converges to a_n .) Let f_n in C(A) vanish off U_n and $||f_n|| = 1 = f_n(a_n)$. Let g_n be an extension of f_n to C(H). The closure of $\{h \mid g_n(h) > \frac{1}{2}\}$ is open and closed in H. Its intersection with $H-\bigcup_{i=1}^{n-1} W_i$ is an open and closed set V_n which meets A in nonempty W_n . Moreover, $A - \bigcup_{i=1}^{n} W_i$ is infinite. By induction the desired sequence exists.

From the proof we have

COROLLARY 7. If B is an infinite closed subspace of H then C(B) contains an isometric copy of m.

PROOF. No subsequence in B converges since H is extremally disconnected. Then use the proof of Lemma 2.

PROOF OF THEOREM 3. Following James [6, p. 900] (see also [4, p. 390]) m is embedded isometrically in C(H) as the subspace \overline{m} of functions constant on each V_i and if f corresponds to the sequence t_i , then $f(h) = t_i$ if h is in V_i . R restricted to \overline{m} embeds \overline{m} isometrically in C(A).

COROLLARY 8. If $H = \beta(N)$, the Stone-Čech compactification of the positive integers N, if $A \subset \beta(N) - N$, and if $(C(H, A), P_{\lambda})$, then C(A) is isomorphic to m.

PROOF. C(H) is isometric to m and $E: C(A) \rightarrow C(H)$ is an isomorphism into. By Theorem 3, m is isometric to a subspace of C(A). Thus $\dim_{l}(C(A)) = \dim_{l}(m)$. By the corollary to Theorem 6 in [4] (or see [7]), since $(C(A), P_{\lambda})$ for some λ , m and C(A) are isomorphic.

THEOREM 4. With the hypotheses of Corollary 8, C(H, A) and $C_{\infty}(H, A)$ are isomorphic to m.

PROOF. Since both are P-spaces and subspaces of C(H), it is enough to show m is isometric to a subspace of $C_{\infty}(H, A)$. Now $A \neq \beta(N) - N$ since $C_{\infty}(H, \beta(N) - N) = c_0$. Let h be in $\beta(N) - N - A$. Let V be an open and closed neighborhood of h not meeting A. Then V is infinite, containing an infinite number of integers; and $C_{\infty}(H, H - V) \subset C_{\infty}(H, A)$. Since $(C_{\infty}(H, H - V), P_1)$, it contains an isometric copy of m [6].

BIBLIOGRAPHY

- 1. D. Amir, Continuous functions' spaces with the bounded extension property, Bull. Res. Council Israel Sect. F 10F (1962), 133-138.
 - 2. N. Bourbaki, Intégration, Hermann, Paris, 1952; Chapitres I-IV.
 - 3. M. M. Day, Normed linear spaces, Academic Press, New York, 1962.
- 4. D. W. Dean, Projections in certain continuous function spaces, Canad. J. Math. 14 (1962), 385-401.
- 5. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173.
- **6.** R. C. James, *Projections in the space* (m), Proc. Amer. Math. Soc. **6** (1955), 899-902.
- 7. J. L. Kelley, Banach spaces with the extension property, Trans. Amer. Math. Soc. 72 (1952), 323-326.
- 8. A. Pelczynski, Projections in certain Banach spaces, Studia Math. 19 (1960), 209-228.
- 9. R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516-541.
- 10. A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. I, J. Math. Anal. Appl. 3 (1961), 537-546.

DUKE UNIVERSITY