SUBSPACES OF C(H) WHICH ARE DIRECT
FACTORS OF C(H)!

DAVID W. DEAN

0. Introduction. Let X be a subspace of C(H) which contains the
subspace C,(H, A4) of functions in C(H) which vanish on the subset
A of H. In this note we examine when X is a direct factor of C(H).
In particular, if X =C,(H, 4), it is shown that X is a direct factor of
C(H) if and only if there is a continuous linear mapping E: C(4)
—C(H) such that Ef is an extension of f for each fin C(4). If Pisa
continuous projection of C(H) onto X it is shown, under fairly gen-
eral conditions, that the complementary projection, I—P, must
have norm || P|| —1 (Theorem 2 below).

These results are used to study certain spaces (C(K), P,). In par-
ticular, let X be the space of functions in C(H) which are constant
on A. If C(H) is a Pi-space and if X is a P\-space it is shown that
C(A) is a Py-space. It is further shown (Theorem 3 below) that C(4)
then contains an isometric copy of m, the space of bounded sequences.
This result is used to show that certain subspaces of m are isomorphic
to m.

1. Notation and examples. Throughout this paper H is a compact
Hausdorff space and 4 is a closed subspace. If the closure of each
open set is open then H is said to be extremally disconnected. The
Banach space of continuous functions on H with the supremum norm
is called C(H). The subspace of C(H) of functions constant on 4
will be denoted by C(H, 4) while C.(H, A4) stands for the subspace
of functions vanishing on 4. If C(H) is a direct factor of every
Banach space Z containing C(H), that is, if one can always write
Z=C(H)®Y for some closed subspace ¥ of such Z, then C(H) is
called a P-space. Thus if C(H) is a P-space there is always a continu-
ous projection P from ZD C(H) onto C(H). If HP” <\ is always pos-
sible, say that C(H) is a P)-space and write (C(H), P)). Every P-
space is a P\-space for some X\ and C(H) is a Pj-space if and only if
for every Z:DZ, and T: Z,—C(H), T a continuous linear mapping,
there is an extension Ty: Z,—C(H) such that || 73| <N|T]| [3, pp. 94,
95]. Kelley [7] has shown that (C(H), P)) if and only if H is ex-
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tremally disconnected. Thus m, the space of bounded sequences, is
easily seen to be a Py-space. Grothendieck [5, p. 169] has shown that
an infinite-dimensional separable Banach space is not a P-space while
Phillips [9, p. 539] proved earlier there was no continuous projection
from m onto ¢, the space of convergent sequences, and hence no
projection of m onto ¢, the space of sequences converging to zero.

Two Banach spaces are said to be isomorphic if there is a one-to-
one continuous linear mapping from one onto the other (with a con-
tinuous inverse) and isometric if this mapping preserves norm.

ExAMPLE 1. Let S be an extremally disconnected Hausdorff space
and let K=SU{} be its one-point compactification, which we
assume is Hausdorff. In [1] Amir has studied such C(K) when C(K)
is a Py-space; and C(K) is completely characterized if A<3. Let H
be the Stone-Cech compactification of S. Then H is extremally dis-
connected and the space C(H, A) is isometric to C(K) and is then
P, if C(K) is. For any H, the space C(H, A) is isometric to C(K),
where K is the one-point compactification of H—4.

ExampLE 2. Let (S, 2, n) be a nonatomic finite measure space
and let M be the space of bounded measurable functions on S with
the supremum norm. Let M, be the essentially bounded measurable
functions identified, as usual, off null measure sets, with the essential
supremum norm. Then M is isometric to a C(H) space. The measure
p corresponds to a Radon measure » on H and [sf(s) du(s)
= [ug(k) dv(h) if f in M corresponds to g in C(H) under the isometry
above. Let 4 be the support of » (see [2, p. 70]). Then 4 is closed in
H (and is a category-one set). Two functions in C(H) correspond to
functions in the same equivalence class in M if and only if they agree
on A. The space M, is isometric to C(4) and 4 is extremally dis-
connected.

A. Ionescu Tulcea and C. Ionescu Tulcea have shown there is a
norm-one linear mapping T: M,—M such that Tf is in the equiva-
lence class {f} for every {f} € M., [10]. Translating to C(H) thereis a
norm-one linear mapping E from C(4) to C(H) which extends each
fin C(4) toa gin C(H); that is, g(k) =f(h) if hisin 4. Let R: C(H)
—C(A) be the restriction mapping Rf(a) =f(a) for every a in 4. For
each g in C(H) let Pg=g—ERg. Then P is a norm-two projection of
C(H) onto C.(H, A), the subspace of C(H) isometric to the space of
p-null functions.

2. The equation C(H)=C.(H, A)@® Y. In general, for any H, 4,
if there is a linear continuous mapping E: C(4)—C(H) which ex-
tends each f in C(4) to Ef in C(H), then there is a projection P of
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C(H) onto C.(H, A), P=I—ER, where R is the restriction mapping
defined above.

TueoreM 1. C(H)=C,(H, A) ® Y if and only if the extension map-
ping E exists from C(A) to C(H). The space Y is isomorphic to C(4).

Proor. That E implies C(H) =C.(H, A) ® Y is shown above. Now
let P be a continuous projection of C(H) onto C.(H, 4) and let ¥V
be the subspace of f in C(H) for which Pf=0. Clearly R is linear and
|R|| =1. We shall show that R is an isomorphism of ¥ with C(4).
Then R!is continuous and let E=R~L If gis in C(4) and if f is
an extension of g, let f=f,+y, where f, is in C,(H, A) and yisin V.
Then Ry=g so R: Y—C(4) is onto. If Ry=0, then y vanishes on 4
and so y is in C,(H, A) also. Thus y is the 0 element of C(H) and so
R is one-to-one. The open mapping theorem ends the proof; however,
the following computation is sufficient and useful. Assume Hy| =1,
and ||Ry|| <1/||P||, let x agree with Ry on A4, have norm 1/||P|| and
have value —1/||P|| where y=1. Then ||y —x||=1+1/||P|| and y—=x
is in Co(H, A). But |[P|| ol =12[|Paf| =[|[ Py—n)]| =[ly—2]| =1
+1/|IP”, since Py=0 and y—x is in C,(H, 4). This contradiction
shows || Ry|| =(1/|| P|) ||5|| for each y. Q.E.D.

From the proof of Theorem 1 one easily proves the following.

COROLLARY 1. Let X be a subspace of C(H) which contains C.(H, A)
and suppose one can write C(H)=X DY where X and Y are closed.
Then R restricted to Y is an isomorphism of ¥V into C(A). If Y1=R(Y),
then Yy is a direct factor of C(4).

THEOREM 2. With the hypothesis of Corollary 1 let P be the indicated
projection of C(H) onto X. Suppose also that H is totally disconnected
and that A is nowhere dense. Then the complementary projection of
C(H) onto Y has norm || P|| —1. That is, ||I—P|| =|| P|| —1.

Proor. Let ||[I—P||=Az1. Let ¢>0 and choose f in C(H) such
that [|f|| =1 and such that ||(Z—P)f]| >\ —e. Because 4 is nowhere
dense, there is a point % in H—A such that I(I—P)f(h)l >N—2e.
Without loss of generality, assume (I —P)f(h) >X—2e.

Since H is totally disconnected, we may find an open and closed
neighborhood U of & which does not meet A. Define f; by fi=1+4f
on U and fi=0 off U. Let g=f,— Pf. Since f; is in C,(H, A), we have
that Pfi=f1, and so Pg=g. Consider the function g— (I —P)f which
is1 on U, —f off U, and has norm 1. Then P(g— (I —P)f)=Pg=g.
Since ||gl| = |g(h)| = |14f(B) —Pf(h)| >14+A—2¢, we have ||P| =1
+A—2¢ Q.E.D.
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COROLLARY 2. With the hypotheses of Theorem 2, if ||P” <2 then
X=C(H).

ProoF. || I—P|| <1 so that I— P is the 0 projection, or I=P.

3. The equation C(H)=C(H, A) ®Y. Throughout this section, S
is a locally compact, extremally disconnected Hausdorff space and
H is the Stone-Cech compactification of S. Let 4 =H —S.

If K is a Hausdorff compactification of S, then C(K) is isometric
to a sublattice of C(H) containing C,(H, A). In particular, if K is the
one-point compactification of S, then C(K) is isometric to C(H, A4).
The isometry may be constructed as follows. Let p be a continuous
function from H onto K. Let T: C(K)—C(H) be defined by setting,
for each f in C(K), Tf(h) =f(o(h)) for every h in H.

Since (C(H), P,), one concludes from Corollary 2 that the condi-
tions (C(K), P,) and A <2 together imply that C(K) is a P;-space.
This result is proved by Amir in [1], where it is also shown that if
(C(K), Py), then K is a compactification of such an S.

COROLLARY 3. If K is an extremally disconnected compactification
of S, then K is homeomorphic to H.

Proor. Let T be the isometry defined above and let X = T(C(H)).
If P is a projection of C(H) onto X with ||P|| =1, then ||[I—P|| =00
that I=P. Thus X =C(H) from which it easily follows that p is a
homeomorphism.

COROLLARY 4. If K is the one-point compactification of S and if
(C(K), P»), then (C(4), Py).

Proor. Since C(K) is isometric to C(H, 4), C(H, A) is a Py-space.
Then C.(H, A) is a Pxy1-space, and write C(H) =C,(H, A)®Y. Let
R be the restriction mapping of ¥ onto C(4) and E the inverse map-
ping (as in the proof of Theorem 1). If Z is a Banach space contain-
ing C(4), the mapping E: C(4)—C(H) has an extension T': Z—C(H)
such that || T|| =||E||. Then RT is a projection of Z onto C(4) and
|IRT|| <||R|| || 7|l =||El|. Now ER=I—P, where P is the indicated
projection of C(H) onto C,(H, 4). Hence ”ER“ =”I—P” =A+H1-1
=\if || P||£\+1, by Theorem 2. It remains to show || E|| =||ER]|. Let
fbein C(4) and ||f|| =1. Let Rg=f and ||g]| =1. Then ERg= Ef and
we conclude that | ER|| is as large as || E||.

CoROLLARY 5. If (Co(H, A), P)) and if N<3, then C(4) is a P;-
space.
Proor. Using the proof of Corollary 4, HEH = ||ER|| =A—1<2, and

so (C(4), P\_;). The remarks preceding Corollary 3 conclude the
proof.
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TuEOREM 3. C(A) contains an isometric image of m, the space of
bounded sequences, if A is infinite.

To prove Theorem 3 we require two lemmas. The first is Theorem 1
in [1] for which we give a different proof.

LEmMMA 1 (AMIR). If B is a compact Hausdorff space and if (C(B), Py),
then no infinite sequence of distinct points in B converges.

PRrROOF. Let b, be such a sequence and suppose b,—b. Without loss
of generality, assume b,=>0 for no #n. Then we may find a sequence
of mutually disjoint open sets { U,} such that b, is in U, for each n.
Let f, vanish off U, and ||f.|| =1=f.(b.), for each #. Then ¢, is em-
bedded isometrically in C(B) by letting the sequence {t,.} in ¢, cor-
respond to the function »_; f.f. in C(B). For each f in C(B), let
Pf= 3.7 (f(bs) —f(b))fa- Then P is a continuous projection of C(B)
onto a subspace isometric to ¢, contradicting Phillips’ result that co
is not a P\-space [9].

COROLLARY 6. If B contains an infinite sequence of distinct points
which converges, then C(B) has a direct factor which is isometric to co.

LEMMA 2. H contains a mutually disjoint sequence of open and closed
sets { V,.} such that for each n, V,MNA is nonempty.

Proor. Fix a; in 4 and let U; be a neighborhood of a; such that
A — U, is infinite (if no such U, exists, every sequence in 4 converges
to a3, contradicting Lemma 1). Let f; in C(4) vanish on 4 — Uy and
7l =1=fi(a:). Let g be an extension to C(H) of fi and ||g|| =1. The
closure V; of the set {hl gi(h) >1} is open and closed, and intersects
A in a set Wi which contains @, and is open and closed in 4. More-
over, A — W, is open, closed and infinite. Suppose mutually disjoint
open and closed sets Vi, - + -, V., are chosen, each meeting 4, in
nonempty Wi, - - -, Wa_y, and that 4 —U}™! W; is infinite. Choose
a,in A —U?"! W;and a neighborhood U, of @, containedin 4 —U}™! W;
such that 4 —U}{™! W;— U, is infinite. (If no such U, exists, every
sequence in A —U}™! W] converges to a..) Let f, in C(4) vanish off
U, and “fnl =1=f.(a,). Let g, be an extension of f, to C(H). The
closure of h[g,.(h)>%} is open and closed in H. Its intersection
with H—U}™! W, is an open and closed set V, which meets 4 in non-
empty W,. Moreover, A —U} W; is infinite. By induction the desired
sequence exists.

From the proof we have

CoOROLLARY 7. If B is an infinite closed subspace of H then C(B) con-
lains an isometric copy of m.
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Proor. No subsequence in B converges since H is extremally dis-
connected. Then use the proof of Lemma 2.

Proor oF THEOREM 3. Following James [6, p. 900] (see also [4,
p. 390]) m is embedded isometrically in C(H) as the subspace # of
functions constant on each V; and if f corresponds to the sequence
t;, then f(h) =t if hisin V. R restricted to #% embeds 7 isometrically
in C(4).

CorOLLARY 8. If H=B(N), the Stone-Cech compactification of the
positive integers N, if A CB(N)— N, and if (C(H, A), Py), then C(A4)
1s isomorphic to m.

Proor. C(H) is isometric to m and E: C(4)—C(H) is an isomor-
phism into. By Theorem 3, m is isometric to a subspace of C(4). Thus
dim; (C(4)) =dim; (m). By the corollary to Theorem 6 in [4] (or see
[71]), since (C(4), P,) for some \, m and C(4) are isomorphic.

THEOREM 4. With the hypotheses of Corollary 8, C(H, A) and
Co(H, A) are isomorphic to m.

Proor. Since both are P-spaces and subspaces of C(H), it is enough
to show m is isometric to a subspace of Co(H, 4). Now 4 #B(N)—N
since Co(H, B(N)—N)=co. Let h be in B(N)—N—A. Let V be an
open and closed neighborhood of % not meeting 4. Then V is infinite,
containing an infinite number of integers; and C.(H, H — V)
CC.,,([H, A). Since (C.(H, H—V), P»), it contains an isometric copy
of m [6].
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