A NEW PROOF OF DEICKE'S THEOREM ON HOMOGENEOUS FUNCTIONS

F. BRICKELL¹

We denote by R_n the *n*-dimensional number space of points $\{x^1, x^2, \dots, x^n\}$, where the x^i are real numbers, and we use R_n' to denote R_n with the point $\{0, 0, \dots, 0\}$ removed. Let L be a positive function of class C^4 defined on R_n' and positively homogeneous of degree one. Then, introducing the matrix g of elements

$$g_{ij} = \frac{\partial^2(\frac{1}{2}L^2)}{\partial x^i \partial x^j},$$

we give a new proof of the following theorem, due originally to A. Deicke [1].

THEOREM. Let det g be constant on R'_n . Then g is constant on R'_n .

It is known that the assumptions made imply that the matrix g is positive definite [1]. We first prove

LEMMA 1. Let x, y be any two points in R'_n . Then $\operatorname{Tr} g^{-1}(x)g(y) \geq n$.

PROOF. Since the matrices g(x), g(y) are positive definite, the characteristic roots of g(y) with respect to g(x) are all positive. These roots are also the characteristic roots of the matrix $g^{-1}(x)g(y)$ so that, using the inequality between arithmetic and geometric means,

$$\operatorname{Tr} g^{-1}(x)g(y) \ge n(\det g^{-1}(x)g(y))^{1/n} = n.$$

We next introduce the elliptic differential operator

$$\Delta = \sum_{i,j=1}^{n} g^{ij} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}},$$

where g^{ij} denotes the general element of the matrix $g^{-1}(x)$ and prove

Lemma 2. The matrix Δg is positive semi-definite.

PROOF. Define a function ϕ_x by $\phi_x(y) = \text{Tr } g^{-1}(x)g(y)$. Since $\phi_x(x) = n$, Lemma 1 shows that ϕ_x has a minimum at y = x and hence the matrix of elements

Received by the editors September 28, 1963.

¹ This research was supported by the National Science Foundation (G-24154).

$$\frac{\partial^2 \phi_x}{\partial y^h \partial y^k}$$

is positive semi-definite for y=x. This matrix is also equal to Δg for y=x.

We complete the proof of the theorem by using a theorem due to E. Hopf [2, Theorem 2.1]. Lemma 2 implies that, for each h, $\Delta g_{hh} \ge 0$. Since g_{hh} is positively homogeneous of degree zero and hence attains a maximum on R_n' , Hopf's theorem shows that g_{hh} is constant on R_n' . Lemma 2 now implies that $\Delta g_{hk} = 0$ for all h, k and, as before, Hopf's theorem shows that g_{hk} is constant on R_n' .

The author wishes to thank Professor H. C. Wang for a simplification to a previous proof.

REFERENCES

- 1. A. Deicke, Über die Finsler-Raume mit $A_i = 0$, Arch. Math. 4 (1953), 45-51.
- 2. K. Yano and S. Bochner, *Curvature and Betti numbers*, Annals of Mathematics Studies No. 32, Princeton Univ. Press, Princeton, N. J., 1953.

NORTHWESTERN UNIVERSITY