AN EXTENSION OF TATE’S THEOREM ON
COHOMOLOGICAL TRIVIALITY!

L. EVENS

Let G be a finite group and f: A—B a homomorphism of G-modules.
In one form, Tate’s theorem says that if, for some 7 and all subgroups
U of G, A—\(U, f) is a surjection, H"(U, f) is an isomorphism, and
H+(U, §) is an injection, then H*(U, f) is an isomorphism for all
U and all #. Whaples has asked if the modification of this theorem
stated below is true, and this paper answers Whaples’ question
affirmatively.

THEOREM. If, for some integer r and every subgroup U of the finite
group G, B (U, f) and B\ (U, f) are isomorphisms, then A*(U, f) is
an isomorphism for every n and every subgroup U.

Proor. By the Sylow subgroup argument in cohomology of finite
groups it is sufficient to prove the theorem for p-groups. For p-groups
we proceed by induction. For the trivial group the theorem is clear,
so let G be a nontrivial p-group and assume the truth of the theorem
for p-groups of lower order. We prove below that A*(U, ) is an iso-
morphism for all U and all #<r+1. The proof for n=r is analogous.
By dimension shifting we may assume r= — 3, that is, that H,(U, f)
and H,(U, f) are isomorphisms for all U. (I mean the ordinary
homology groups.) Let H be a maximal subgroup of G. We have the
following commutative diagram with obvious vertical arrows.

H\(G/H, H\(H, A))-Z—)>K1(A)—>Hz(G/H, An)—H\(H, A)e—H1(G, A)—>H\(G/H, Ag)—0
Ml Y@l el YR ON! ©1!
H\(G/H, Hi(H, B))-(;-)’Kz(B)—'Hz(G/H, Bg)—H\(H, B)¢—H\(G, B)—H\(G/H, Bg)—0,
where Ko(A)=Coker(ix: Hy(H, A)—Hy(G, A)), i: H>G being the
inclusion.
To make clear what the horizontal maps are, and to prove the rows
exact, we make use of the homology spectral sequence

Hy(G/H, H(H, A)) = Hy(G, 4).

The latter is completely dual to the usual Hochschild-Serre spectral
sequence, and the edge homomorphisms H,(G, A)—H,(G/H, An)
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and H,(H, A)¢—H G, A) are induced respectively by the obvious
arrows G—G/H and 7: H—G. The exactness, then, at the last four
places is just dual to the exactness of the so-called fundamental exact
sequence in the cohomology of groups. The exactness at the second
place and the definition of arrow (*) are derived from a slightly
subtler analysis of the spectral sequence. (This remark—whose ana-
logue holds for cohomology—was first pointed out to me by G. P.
Hochschild.) Simply, if

0C FoC F1 C F; = Hy(G, 4)

is the filtration associated with the spectral sequence, then Fy/F,
=H,y(G, A)/Im {ix: Hy(H, A)—H,(G, A)} =Ks(4) and Fy/Fy=Ey,.
The latter, however, is a homomorphic image of E:,
=H,(G/H, Hy(H, A)) since d2,=0.

By hypothesis the arrows (1), (4), (5) are isomorphisms. More-
over, there is the following commutative diagram with exact rows.

Hy(H, A) — Hy(G, A) = K4(4) = 0

0 J (8)1 (2)}
Hz(H, B) i Hz(G, B) g Kz(B) e d 0.

Since arrows (7), (8) are isomorphisms, so is (2). By two applications
of the Five Lemma, arrows (3), (6) are isomorphisms. Thus since
G/H is cyclic H,(G/H, fg) is an isomorphism for all n=1.

By the induction hypothesis we may assume that H,(U, f) is an
isomorphism for all proper subgroups U (in particular, for H), and
for all z=1. Hence it suffices to show that H,(G, f) is an isomorphism
for all n=1. To see this consider the morphism of homology spectral
sequences induced by f. For the E? terms this gives arrows

H,(G/H, H,(H, A)) — H,(G/H, H,(H, B))

which are isomorphisms for (p, ¢) (0, 0). This is true by the induc-
tive hypothesis if ¢>0, and it is what is proved above for ¢=0. It
now follows that the morphism of spectral sequences is an isomor-
phism, and the induced morphisms H,(G, f) (n>0) at the end of the
spectral sequence are isomorphisms. This completes the proof of the
theorem.

REMARKS. 1. The above theorem implies the theorem on cohomo-
logical triviality of modules. If B*(U, A) vanishes in two successive
dimensions for all subgroups U, apply the above theorem to the zero
morphism of 4 onto 0. Since this and Tate’s theorem are equivalent,
we have yet another proof of Tate’s theorem.
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2. Let A"(U, A)=A~(U, B) in two successive dimensions and for
all subgroups but do not assume the isomorphisms induced by a
module homomorphism. It would not be reasonable to expect iso-
morphisms for all » and all subgroups. The following counterexample
justifies our pessimism. Let G=G,(a, b: a*=b"7=1, aba—1=0?); let 4
be Z with trivial action and B the result of dimension shifting down
two steps. Then H¢(G, 4; 7)=H*2*G, B; 7)=0 for g=1,2,3475
and B%G, 4; 7)=H*(G, B; 7) =0.
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In this note R will denote a commutative ring with unit and a
proper ideal of R is an ideal of R different from (0) and R. Nakano
has shown that R is a Dedekind domain, provided that every proper
prime ideal of R is invertible [1]. In [2], Krull defines a prime ideal
P to be quasi-invertible provided PP~!> P, where > denotes proper
containment and P~! is the set of elements x in the total quotient
ring of R such that xP CR. The purpose of this note is to prove that
Nakano’s result remains valid when invertible is replaced by quasi-
invertible. Examples are known of rank-two valuation rings in which
the maximal ideal is invertible—hence, in Nakano’s result, prime
cannot be replaced by maximal.

LEMMA. If P is an invertible prime ideal in R then N, P"is a prime
ideal.

Proor. The proof is the same as that of the first part of Theorem 4
of [1].

THEOREM. If every proper prime ideal of R is quasi-invertible, then
R is a Dedekind domain.

Proor. If R is a field there is nothing to prove. Let M be an arbi-
trary proper maximal ideal of R and denote by Ry the quotient ring
of R with respect to M (see [3, pp. 218-228]). Let N denote the ideal
consisting of the elements x&R such that there exists an element
m& M such that mx=0. Let % be the natural homomorphism from
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