
ON THE LINE GRAPH OF A PROJECTIVE PLANE1

A. J. HOFFMAN

1. Introduction. If G is a (finite, undirected) graph, its line graph

(also called the interchange graph, and the adjoint graph) is the

graph G* whose vertices are the edges of G, with two vertices of G*

adjacent if the corresponding edges of G ave adjacent. Let x be a

projective plane with ra + 1 points on a line, and let G(7r) be the bi-

partite graph whose vertices are the 2(ra2+ra + l) points and lines of

T, with two vertices adjacent if and only if one of the vertices is a

point, the other is a line, and the point is on the line. The graph we

shall study is (G-(7r))*.

For any graph G, let

il    if i and j are adjacent vertices,

AiG) = A = (a«) = \n /
\0   otherwise.

A is called the adjacency matrix of G, and in recent years there have

been several investigations to determine to what extent a regular,

connected graph is determined by the characteristic roots of its

adjacency matrix. In the case where G is a line graph, the following

results have been obtained :

(i) If G is the line graph of the complete bipartite graph on ra+ra

vertices, and H is a regular connected graph on ra2 vertices such that

AiH) has the same characteristic roots as AiG), then H=G unless

ra = 4, when there is exactly one exception [9].

(ii) If G is the line graph of the complete graph on ra vertices, and

H is a regular connected graph on ra(ra —1)/2 vertices, such that

AiH) has the same characteristic roots as ^4(G), then H=G, unless

ra = 8, when there are exactly three exceptions [l], [2], [3], [4], [5],

[8]-
In this paper, we shall prove that if H is a regular connected graph

on (ra+l)(ra2+ra+l) vertices such that AiH) has the same char-

acteristic roots as AUGiir))*), then ü=(G(7Ti))*, where xi is some

projective plane of the same order as t. Thus the characteristic roots

of ^4((G(7r))*) do determine the class of graphs (G(7r))*, but do not

distinguish between projective planes of the same order.

2. The characteristic roots of AUGiir))*). It is useful first to deter-

mine the characteristic roots of AiGiir)).
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Lemma 1. A regular connected graph G on 2(»2+» + l) vertices has,

as the distinct characteristic roots of A (G),

(2.1) (»+1),        -(n+1),        V«,        -V»

if and only if G = G(w), where t is a projective plane of order n.

Proof. By definition, if G = G(ir),

/ 0    B\

(2.2) A(V = (bt    J.

where B is a point-line incidence matrix of x. The characteristic roots

of (2.2) are the singular values of B and their negatives. But the

singular values of B are w + 1 and V» [7].

Conversely, assume A has (2.1) as its distinct characteristic roots.

If A =A(G), then [6] G is bipartite, so A is of the form (2.2), where

B is a (0, 1) matrix with row and column sums equal to « + 1, and

BBT has all but one characteristic root equal to ». Hence BBr — nI

is a nonnegative integral symmetric matrix of rank one with every

diagonal entry equal to 1. This implies BBT—nI has all entries 1,

i.e., B is the incidence matrix of a projective plane ir of order ».

Another derivation of Lemma 1 is given in the thesis of R. R.

Singleton [lO], in which it is proved that a regular connected graph

H of valence « + 1 and girth 6 has 2(»2+» + l) vertices if and only if

H=G(ir).

Lemma 2. The distinct characteristic roots of A(G(ir)*) are

(2.3) 2«,       -2,       « - 1 + V«.

Proof. Let A=A((G(ir))*), B be the adjacency matrix for G(ir).

Let K be the 2(»2+»+l) by («-r-l)(»2+«+l) matrix whose rows

correspond to the points and lines of ir, and whose columns corre-

spond to the edges of (G(ir))*, i.e., each column of K contains two

l's, corresponding to an incident point and line of x, the remaining

entries in the column being 0. Clearly,

KKT = (n + 1)1 + B,       KrK = 2I+A.

The distinct characteristic roots of KKT and KTK are the same ex-

cept possibly for 0. But KrK is singular, since its rank is at most

2(»2+»-r-l), while its order is (»+l)(»2+»+l); KKT is singular,

since the sum of the rows of K corresponding to points of -w minus

the sum of the rows of K corresponding to lines of w is the zero

vector. Thus the distinct eigenvalues of KKT and of KTK are the

same. Invoking (2.1) then proves (2.3).
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3. Theorem. If G is a regular connected graph with no edges joining

a vertex to itself, if G has (ra+l)(ra2+ra + l) vertices and the adjacency

matrix of G has (2.3) as its distinct eigenvalues, then G = (G(ir))*, for

some projective plane ir of order ra.

In the lemmas that follow, we assume that G satisfies the hypoth-

esis of the theorem, A =AiG), J is the matrix every entry of which

is 1.

Lemma 3. Let

(3.1) P(x) = i(x* - (2ra - 4)x2 + (ra2 -In A- 5)x + 2(ra2 - 3ra + 1)) ;

thenPiA) = J.

Proof. It has been shown [6] that the adjacency matrix of a regu-

lar connected graph of valence d on N vertices, with distinct eigen-

values d, «i, • • • , at, satisfies P(ß) = J, where

P(x) = Njlix - a<) /Rid - a>).
i 'i

From (2.3), we then calculate (3.1).

Lemma 4. If two vertices of G are adjacent, then there are exactly ra — 1

vertices of G adjacent to both. If two vertices of G are not adjacent, then

there are no vertices or exactly one vertex adjacent to both.

Proof. Let i be any vertex of G. Then i has valence 2ra, so there are

2ra vertices j\, • • • , j2n such that a(jt=l, t = l, • • • , 2ra. We first

show that

(3.2) E U*)u, = 2ra(ra - 1).
t

This follows from (3.1) ; for the left side of (3.2) is 043)¿¿, and by (3.1),
(^s)í< = 2(J)li+(2ra-4)(/l2)<,— (ra2-7ra+5Mi¿-2(ra2-3»+l).    But

Ju=l, (As¡)u=2n, Au = 0, and (3.2) follows.

Next, consider the matrix

(3.3) B= A2-2nI - in- 1)A.

We shall show that every entry of B is 0 or 1. Certainly every

entry is an integer. Let i be any row of B. From the fact that E/W2) a

= (2ra)2, we infer that

(3.4) E bu = 2ra2.
4
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We next evaluate £,-&«= (B2)u. We have from (3.3)

B2 = A* - 2(« - 1)43 + (»2 - 6» + 1)A2

+ 4»(»- 1)4 + 4»*/.

Further, 7«-l, .4«=0, A% = 2n, A% = 2n(n-1) from (3.2). To evalu-

ate (A*)u, we use (3.1), with P(A)=J, and obtain AP(A)=AJ

= 2»/. Since AP(A) is a fourth degree polynomial in A, we can evalu-

ate

(A*)« = 4» - 2»(«2 - 7» + 5) + 2»(» - 1)(2« - 4).

Putting these expressions in (3.5), we obtain

(3.6) (B2)a = £ 6y = 2»2.
i

From (3.5) and (3.6) we infer that each of the integers by is 0 or 1.

Recalling the definition of B in (3.3), this proves the second sentence

of the lemma. To prove the first sentence, note from (3.2) and (3.3)

that £í&¿j( = 0. Since each ty is 0 or 1, each &,,( = 0. By (3.3), this

proves the first sentence of the lemma.

Lemma 5. G contains 2(»2+» + l) cliques Cy • • ■ , C^n'+n+v with

the following properties:

(3.7) Each d contains exactly n+1 vertices.

(3.8) Each vertex of G is contained in exactly two C<.

(3.9) Each pair of adjacent vertices of G is contained in exactly one d.

Proof. The set of cliques C< will consist of all cliques with « + 1

vertices, which establishes (3.7). To prove (3.9), let i and j be adja-

cent vertices of G. Let k and I each be adjacent to both i and j. If k

and I were not adjacent, we would have a violation of the second

sentence of Lemma 4. Hence, the » — 1 vertices adjacent to both i

and j (by the first sentence of Lemma 4) are adjacent to each other.

These vertices, together with i and j, are the unique cliques with »+1

vertices containing i and j.

Let T be the total number of » + 1 cliques, and let us count the

number of incidences of cliques with pairs of vertices contained in

the clique. This is

/»+1\
Tl j = \2n(n + 1)(»2 + » + 1),

for the right-hand side is the total number of pairs of adjacent ver-

tices. This equation yields r = 2(»2+w + l). Thus all that remains to
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be proven is (3.8). Since the valence of each vertex i is 2«, there

must be at least two ra+1 cliques containing i. If these two cliques

did not contain all vertices adjacent to i, there would have to be some

vertex jVi in both cliques, violating (3.9).

We are now ready to prove the theorem. Let G be the graph whose

vertices are the ra + 1 cliques of G. Two vertices of G are adjacent

if the corresponding cliques of G have a common vertex. It follows

from Lemma 5 that G is a regular connected graph of valence ra + 1,

and that G = G*. We will be finished if we prove that G = Giir). Let

L be the vertex-edge incidence matrix of G, and let Ä be the adja-

cency matrix of G. Assume Ä has distinct characteristic roots ra + 1,

«i, • • • , at. Since

LLT = (ra + 1)1 + Ä,       LTL = 21+ A,

and (except possibly for 0) the distinct characteristic roots of LLT

and LTL are the same, it follows by the same reasoning as in Lemma

2 that the distinct characteristic roots (with the possible exception

of —2) of A are

(3.10) In,       ra - 1 + at.

Comparing (3.10) with (2.3), we see that, if —2 is of the form

ra — l+ae, then Ä has the same distinct characteristic roots as the

adjacency matrix for G(7r), and (by the "only if" part of Lemma 1)

we are finished. Therefore, assume otherwise, so that (comparing

(3.10) with (2.1)) we find that the distinct characteristic roots of Ä

are

ra+1,       ± V».

Since G is regular and connected, we can, as in Lemma 3, use the

theorem of [6] to assert that

2(i2 - ni) = J.

But since A is a (0, 1) matrix, this is absurd.
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