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and the desired result would follow if any one of these were less than

or equal to Per(X). Actually one can show, for » = 3, that

3 Per(X) à Per(X0 + Per(X2) + Per(X8),

but the method offers no hope of generalization.

Even the analogue of the theorem for two arbitrary rows has inter-

esting applications to infinite products and series which seem to be

true in the cases tried, but no proof is in sight.
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PERFECT CLOSURES OF RINGS AND SCHEMES1

MARVIN J. GREENBERG

0. In [3], Serre has defined the notion of a perfect variety over a

field of characteristic p>0. Of course, a perfect variety is, in general,

not a variety. The appropriate setting is that of schemes [2]. We

show how to construct the perfect closure of a scheme, in particular,

of a ring A, of characteristic p. This amounts to showing that the

functor 5—>Ylom(A, B) is representable in the category of perfect

rings. We do this by the technique of inductive limits.

1. Let A be a ring (meaning commutative associative unitary ring)

of characteristic p > 0, p a prime ; p is thus the smallest positive in-

teger » such that na = 0 for all aEA. Then A has a canonical ring

endomorphism, denoted F, given by

F(a) = ap,       a £ A.

Clearly, F commutes with all homomorphisms of rings of character-

istic p.

We say A is perfect il F is an automorphism of A (so that every

element of A has a unique pth root in A). For example, finite fields
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and algebraically closed fields are perfect.

We say A is p-reduced if F has trivial kernel, i.e., a" = 0=><z = 0.

In the general case, the elements of A which are nilpotent of ex-

ponent a power of p form an ideal which may be called the p-radical

of A, denoted Ap<*>. Then A/Ap«> is ¿»-reduced.

We wish to solve the following universal problem: Find a pair

iA*, <p) consisting of a perfect ring A* and a homomorphism

<p: A-*A* such that, for any other such pair (5, ip), there is a unique

homomorphism \[/*: A*—*B satisfying\[/*<p=\p. As is usual in universal

problems, the solution is determined up to unique isomorphism. We

call such a pair iA*, <p) a perfect closure of A. If A is a domain, the

existence of a perfect closure is well known and elementary: Simply

adjoin to A all p'th roots of elements of A for all v^l (say within

some algebraic closure of the quotient field of A).

2. Every ring A of characteristic p>0 has a perfect closure iA*, <fi).

If x£^4*i then xp"E<t>iA) for some v^O. The homomorphism <p is in-

jective if and only if A is p-reduced iin fact, the kernel of <b is Ap«>).

Proof. Consider the inductive system of rings and homomorphisms

iAi, /i)osi<» given by A{ = A and /< = F (where /,¡: A f—*-A¿+i) for all

t^O. Let A * be the inductive limit of this system [l, p. 9},<pi:Ai-^A*

the canonical homomorphism, (b = <bo.

Let B be any perfect ring, \p: A-+B a homomorphism. Define

ft: 4r*B by

Ma) = Ma)upi,       aEA,

which makes sense because B is perfect. Then ^,o=^', and ft+i/»-=ft

for all i jgO. Hence there is a unique homomorphism \[/*: A*-+B such

that \¡/*<¡>i = ,pi for all t'^0, by definition of inductive limit.

Let gi=fi-ifi-2 • ■ ■ fo = Fi: A-*Ai for any t^l. For any xG^4*,
there is an tïïO and y£-4,- such that x=<£,(y). Then ypt = giiy),

whence xp,—<pigiiy)=<¡>iy).

Clearly the kernel of <p is Ap», since <£(y) = Qt=>giiy) = 0 for some

Define the homomorphism h¡:Ai-^Ai+i for any t^O to be the

identity map of A=A¡ = Aí+i. Then <pi+ihi+ifi=<j>i+ihi for all t^O,
whence there is a unique endomorphism A of A* such that hj>¡

=<¡>i+ihi for all t^O. We claim A is the inverse of F on A*: Given

xEA*, choose t =: 1 and yEA¿ such that x — <j>iiy). Then F(x) = <f>iiyp)

= ^i-iAr1^)! whence AF(x) = x; moreover, FA(x) = F(j>i+ih¡iy)

=4>i+iihiiy)p) =4>i+ifiiy) =4>iiy) =x. Thus A* is perfect.
It is convenient to choose once and for all a perfect closure of A
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(say the one we have just constructed), denote it by ¿41/i>e° (<p under-

stood to be as above), and call it the perfect closure of A.

3. We can dualize the above problem by reversing all arrows, i.e.,

by considering homomorphisms of perfect rings into A. A solution

04*, 6) to this dual problem may be called a perfect core of A. It can

be constructed by using projective limits instead of inductive limits

(i.e., all Ai = A again, but now F=/»: -4,-+i—*Ai). The image of 0 is

then seen to be ApK, the subring of those elements having a p'th

root in A for all v^l.

4. It is clear from its definition that the operation of taking the

perfect closure is a functor from the category of rings of character-

istic p to the category of perfect rings of characteristic p. Let/: A^>B

be a homomorphism, /*: A 1'¡,'°-^B1'I''° the induced homomorphism,

<Pa, <¡>b the canonical homomorphisms of A, B (resp.) into Allp™,

51/p°° (resp.). We see at once that /*(x)=0<=> there is a i^O such

that xp"G0a(/~1(5j,°=)). Hence / injective =>/* injective (since

f-1(Bp«)=Ap"). Moreover, f*(Al'pX) is the set of all p'th roots for

all ^2:0 of elements of <ps(f(A)). Hence/ surjective =>/* surjective.

5. We will need to consider mappings/: A—*B which are not neces-

sarily ring homomorphisms but are merely additive group homomor-

phisms respecting ¿>th powers, i.e., additive homomorphisms which

commute with F. Let us call them additive p-homomorphisms. For

example, if g, h are ring homomorphisms A-^B, f=g — h is no longer

a ring homomorphism, but is an additive ^-homomorphism. In par-

ticular, every ring of characteristic p has a canonical additive p-

endomorphism p given by

f(x) = xp — x.

The kernel of 9 is the group of fixed points of F.

We then have a more general universal property: If u/; A-^A' is an

additive ^-homomorphism with values in a perfect ring A', then

there is a unique additive ^-homomorphism \p*: Allpa-^A' such that

\}/*<p=yj/. For y¡/ induces an additive ^-homomorphism ip':<p(A)—*A',

and given xEAl,pXI, xp"E4>(A), setting

yp*(x) = t'(xp"yip'

gives the asserted result.

It is then immediate that everything said in §4 about a ring homo-

morphism/: A—>5 remains valid if we only assume/ is an additive

^-homomorphism.
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In particular, suppose

/    g
A^B^C

is an exact sequence of additive p-homomorphisms.

FAera

is again exact: For if g*iz) = 0,  there is a  v ^ 0 such  that zp'

eMg-KCp«)), i.e.,

2"' = <¡>BÍW), WE B,

i (»K = o,

whence W"=/(x) for some xEA, so that

f*<t>AÍx) = ^(«O = zP'+",      f*<i>AixyipV+" = z.

6. Since perfect closure is a functor, we can then globalize, i.e.,

extend this functor to the category of preschemes X over Z/p (the

finite field with p elements; cf. [2] for facts about preschemes). To

any open UEX, we assign the perfect ring TiU)llp°°, where T(U) is

the ring of sections over U of the structure sheaf 0 of X. We then ob-

tain a presheaf on X, but by §5 this presheaf is a sheaf, i.e., if ([/,-) is

an open covering of U, the sequence

0 -► TiUyip" -> II TiUi)11»" -» TT T(Ui H Uj)*'»"
i i.i

is exact.

We denote this sheaf by 01/p°°, and call the ringed space (X, 6llpa)

the perfect closure of X, briefly Xllp°°. We have a canonical morphism

of ringed spaces <£: XllpCa—>X, which is the identity on the underlying

topological space.

7. Let 5 be a multiplicative submonoid of A, i.e., ÍES, and S is
stable under multiplication. Let 51,p°° be the perfect closure of 5 in

AllpX, i.e., the set of all xEAllpC such that xp,E<l>iS) for some ^^0.

Then the rings (4s)1/p°° and (41/l>w)si/p" are canonically isomorphic

(cf. [2 ] for rings of fractions) : There is an obvious homomorphism

/: iAllp"')si!p'°—>iAs)llpC. But iAllpa)sifr* is perfect, so there is a

canonical homomorphism in the other direction which is inverse to /.

Perfect closure commutes with filtering inductive limits: This follows

immediately from the fact that a filtering inductive limit of perfect

rings is perfect. Thus the stalk of Xl,p° at a point x is iOx)llp°°. If we
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take an affine neighborhood Spec A of x, so that x is a prime ideal in

A, and S=A-x, then (e.)"»" = (41 "")*/»"•
To each ideal a in A, associate the ideal a1/p°° in AllpC defined in

the obvious way. We obtain an epimorphism of the lattice of ideals

in A onto the lattice of perfect ideals in AllpC (ideals stable under ex-

traction of pth roots). If we define the p-radical of an ideal a to be the

ideal pVa of all elements in A having some pth power in a, then

a1/p0° = ui/p0°<=>Pv/a = PV/{,. in particular, the lattice of prime ideals

in A is isomorphic to the lattice of prime ideals in Allp , so that

Speed1'11 —»Spec A is a homeomorphism.

If p is a prime ideal in A, S = A — p, one checks at once that 51/p°°

= AllpC — p1/pM. Thus we can identify Speed1'"'0 with (Spec -4)1/pW,

so that the perfect closure of a prescheme is again a prescheme, having a

structure sheaf of perfect local rings. We can call such a prescheme a

perfect prescheme. The couple (XllpX', <3?) is then universal with respect

to morphisms of perfect preschemes into X. The category of perfect

preschemesisstableunderproducts,sincethetensor product of two per-

fect rings is perfect, and perfect closure commutes with products. It

follows that the perfect closure of a group scheme is again a group

scheme.

A perfect prescheme has a canonical family (Fn)nSZ of automor-

phisms which are the identity on the base space.
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