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1. Introduction. In a recent paper [l], the concept of the poly-

nomial of an undirected graph was introduced, and it was pointed

out that (i) a graph has a polynomial if and only if it is regular and

connected, and (ii) various previous studies (see the references in [l])

were special cases of the problem: find all graphs having the same

polynomial.

In this paper, we prove the analogue of (i) for directed graphs, and,

in addition, obtain some results of type (ii) for a class of directed

graphs arising from a mesh on a torus.

2. On the existence of polynomials. Let G be a directed graph on

ra vertices, with at most one edge from vertex i to vertex j, and no

edge from i to i. For each vertex i, let d, be the number of edges

with terminal vertex i, e< be the number of edges with initial vertex i.

G is said to be strongly regular if di = e, = d, i = l, • • • , ra; G is said

to be strongly connected if, for any vertices i and/, i^j, there is a

directed path from i to /.

Let ^4(G) =A be the adjacency matrix of G, i.e.,

Il    if there is an edge from i to j,
aa = \ .

(.0    otherwise.

Let u be the vector of order ra every entry of which is unity, J the

matrix of order ra every column of which is u.

Theorem 1. (i)  There exists a polynomial P(x) such that

(2.1) J = PiA)

if and only if G is strongly connected and strongly regular.

(ii) The unique polynomial of least degree satisfying (2.1) is

w5(x)/5(d) where (x—d)5(x) is the minimal polynomial of A and d is

the valence of G.

(iii) If P(x) is that polynomial of least degree satisfying (2.1), then

the valence of G is the greatest real root of P(x) =ra.

Proof. Assume (2.1). Let i, j be distinct vertices of G. By (2.1),

there is some integer A such that Ak has a positive entry in position
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(i, j), i.e., there is some fc-step path from i to j. So G is strongly

connected. Further, from (2.1), /commutes with A. But the (i,j)th

entry of AJ is e,, and the (i, j)th entry of JA is d¡. Thus e, = áy for

all i and j, so G is strongly regular.

To prove the converse of (i), assume G strongly connected and

strongly regular. From the strong regularity, « is a left and right

eigenvector of A, corresponding to the eigenvalue d. Hence, if d has

multiplicity greater than 1, it must have at least one more eigenvec-

tor associated with it. But from the strong connectedness, using a

standard argument [l], u is the only eigenvector corresponding to d.

It follows that, if R(x) is the minimal polynomial of A, and if

S(x)=R(x)/(x-d) then S(d) ^0. We then have

(2.2) 0 = R(A) = (A - dl)S(A).

Since R(A)v = 0 for all vectors v, it follows from (2.2) that

(A-dI)S(A)v = 0,

so S(A)v=au for some a.

If (v, u) = 0 then (Akv, u) = (v, (AT)ku) =dk(v, u) = 0 for every k and

so (S(A)v, u)=0. Therefore, 0 = (S(A)v, u) = (au, u)=na, i.e., a = 0.

Thus S(A)v = 0 lor all v such that (v, u) =0; further, S(A)u = S(d)u.

Hence nS(A)/S(d) = J, i.e. a polynomial which will accomplish (2.1)

is

This completes the proof of (i); (ii) follows since (2.3) has smaller

degree than the minimal polynomial of A.

To prove (iii) we note that A is non-negative and has row and

column sums d. Thus, by [2], the eigenvalues of A are all of absolute

value gd. The roots of P(x) are eigenvalues of A and hence for real

x>d, \P(x)\ is a monotone increasing function of x. From (2.3),

P(d) =» and so, since P(x) is a real polynomial, P(x) >» for x>d.

This completes the prooff of the theorem. We call (2.3) the poly-

nomial belonging to G (and also say that G belongs to the poly-

nomial).

3. A graph on a torus. For any positive integer / let Gt be the graph

whose vertices are all ordered pairs (i, j) of residues mod t and whose

edges go from (i, j) to (i, j+1) and (i+1, j) for all i,j. Clearly Gt is

strongly regular of valence 2, and strongly connected. We now de-

rive its polynomial.
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Let X, p be arbitrary (not necessarily distinct) ith roots of unity.

Let v be the vector whose (*, j)th component is XV. If A is the

adjacency matrix of G( then Av = i\+p)v. Further, different vectors

»i, Vi have as their scalar product E-.j MmÍ^TVt'i which is zero unless

Xi = X2 and pi=p2. Hence the set of vectors corresponding to the t2

choices of the pair X, p form a complete orthogonal set of right eigen-

vectors. From this it follows that A is normal and that the minimal

polynomial of A has no repeated factors. Hence, by Theorem 1, the

polynomial belonging to G( is

(3.1) Ptix) = ^—Stix),
Sid)

where

cm  n(*-p)Stix) =-— .
x — 2

the product being taken over all distinct p of the form \+p, where

X, p are tth roots of unity. For example,

Piix) = — *(* + 2),

P3(x) = — (x3 + l)(x2 + 2x + 4),

1
Piix) = — *(* + 2)(x2 + 4)(x4 + 4).

80

4. Does Pt(x) characterize G¡? In view of the investigations of

comparable questions for undirected graphs, it is natural to ask: if

His a graph with i2 vertices, and Ptix) is the polynomial of H, is

H==.Gt? We know of no instance in which H-ßGt, but have only been

able to prove i2=G( if t is a prime or if t = 4. Before specializing to

those cases, however, we begin with a few lemmas. We assume H

has t2 vertices and belongs to Ptix), and A is the adjacency matrix of

H.

Lemma 1. H is strongly connected and strongly regular of valence 2.

Proof. That H is strongly regular and strongly connected follows

from the fact that H has a polynomial. By Theorem 1 (iii) the valence

of H and the valence of G<both equal the largest real root of P(x) =ra

and so the valence of if=the valence of Gt = 2.

Lemma 2. The vertices of H can be partitioned into t sets 7\ (t'GZj,
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the ring of residue classses mod t), such that every edge in H goes from

a vertex in I\ to a vertex in Ti+y

Proof. From the proof of Theorem 1, we know that 2 is an eigen-

value of A of multiplicity one, and every eigenvalue is of absolute

value at most 2. Because 2X is also an eigenvalue of A lor X any tth

root of unity, it follows [2] that A can be conceived as having the

appearance

(4.1)

0 Ao

0     Ai

0

At

At-2

0j

where each diagonal block of 0's is square. But each Ai must also

be square, since the numbers of l's in Ai is twice the number of rows

of Ai and also twice the number of columns. Thus A{ is of order /,

which implies the lemma.

Lemma 3. Let t> 2, let a be a primitive tth root of unity and let X be

any tth root of unity. Then for any r, s with (s,t) = l, 1 +cor and X(l +co")

have the same multiplicities as eigenvalues of A.

Proof. Let x be an eigenvector of A corresponding to the eigen-

value a, and let x = (xo, • • • , xt-i) denote the partitioning of the

coordinates of x corresponding to (4.1). We have AiXi+i=ax(. Thus

Ai(\i+1xi+i) — aX(\*xi). Thus (x0, Xxi, • • • , X,_1iC(_i) is an eigenvector

of A corresponding to the eigenvalue Xa. Since the minimal poly-

nomial of A has no repeated factors, the multiplicity of an eigenvalue

is just the dimension of the corresponding space of eigenvectors and

so the multiplicities of a and Xa are the same. Finally the multiplici-

ties of 1 +cor and 1 +wr» are the same, since these are algebraic con-

jugates and the characteristic polynomial of A is rational. This con-

cludes the proof of the lemma.

Note in particular that 2X is a simple eigenvalue of A.

Lemma 4. Let A be of the form (4.1) and of rank r. Then for Ogi
^t — 1, j'^0, the rank of AiAi+iAi+2 • • • Ai+j is r/t, where addition of

suffixes is taken mod t.

Proof. Let m{ be the rank of A <. Then £,• m¿ = the rank of A =r.

Since the minimal polynomial of A has no repeated factors, A = S~lDS

for some nonsingular 5 and diagonal D. Hence, the rank of A' is
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also r. Now A' consists of diagonal blocks A0Ai • ■ • At-i, AiA2 • • •

At-iAo, ■ • • , At-iAo ' • • At-i. The rank of each block is at most

rai = min¿»»¿; hence, Yjimi = r = tm and so mi — r/t for all i. This

proves the lemma for j = 0. The result for j > 0 follows from a similar

consideration of A '.

Lemma 5. Let t>2. If A is normal, then H=Gt.

Proof. Let ÜC, be the undirected bipartite graph whose vertices are

the vertices of F, and F,+i, as defined in Lemma 2, and which has

an undirected edge joining xET, and yGF.+i if and only if an edge

of H joins x to y.

We first show that if, is a cycle of length 21. Since every vertex of

Ki is of valence 2, Ki is the union of pi cycles for some £,-5:1. The

matrix AAT has 4 as an eigenvalue with multiplicity E'=iPt- But

since A is normal, and 2X (for X any ith root of unity) is a simple

eigenvalue of A, AAT has 4 as an eigenvalue with multiplicity t.

Hence pi—1, i = 0, ■ ■ ■ , t — 1, which was to be proven.

Next, we show that trace A ' = 2/2. Since each Ki is a complete cycle

the eigenvalues of A A T are the union of the eigenvalues of t matrices

of order t of the form 2J+P,+PiT (t=0, • • • , t-l), where each P,

is a permutation matrix that represents a single cycle on t letters.

Therefore, AAT has: 4 as an eigenvalue with multiplicity t; 2+X+X

as an eigenvalue with multiplicity 2f, for X = exp(2HiA/i), A = l, • • • ,

[it —1)/2]; and if t is even, 0 as an eigenvalue with multiplicity t.

Since A is normal, these are the squares of the absolute values of

the eigenvalues of A. Therefore, the number of eigenvalues of A of a

given absolute value (other than 2 or 0) is the same for each absolute

value. We also know from Lemma 3 that all eigenvalues of the same

absolute value occur equally often. It follows that A has the same

eigenvalues as the adjacency matrix for Gt. But the trace of the tth

power of that matrix is 2f2, so trace A ' = 2i2.

Since Ko is a cycle of length 2t, we may label the vertices of T0

and Fi as ii, —i) and (t + 1, — i), respectively iiEZt), in such a way

that the edges from (t, — i) go to (t + 1, — i) and (t, 1— i). Since A is

normal and there is just one vertex, namely ii, —i), which is the

initial vertex of edges to both (t + 1, — i) and (*, 1 — i), it follows that

there is just one vertex, which we label (t+1, 1— i), which is the

terminal vertex of edges from both (t + 1, — t) and (t, 1—t). We now

have the vertices of Fi and F2 labelled in such a way that the edges

from (t+1, —i) go to (t + 2, — t) and (t + 1, 1—t). We may continue

labelling in this fashion the vertices of Tz, F4, • • • , Ft_i. Let pa

be the number of paths of length t — 1 from (t, — i) to (J, t — l—j).
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Then pa is C"1) where m is the least positive residue (mod /) of j—i,

for the normality of A implies that the count of paths mimics the

Pascal triangle. If (a,, t — l—ai) and (/3¿, t — 1—ßi) are the vertices

of Ti-i which are initial vertices of edges going to (i, —i), then the

number of paths of length t from (i, —i) to itself is pi,ai+pi,ßi- By

hypothesis, trace A' = 2i2. Since the diagonal blocks of A% are cyclic

permutations of the factors Ay A2, • • • , At, each block has the same

trace, 2t. Hence,
<-i

£ (Pi,ai + pisi) = 21.
t-0

Since each pi,ai and pitß{ is at least 1, it follows that pi,a¡ and pi,ßi are

exactly 1 and that ait p\ are just i and i — 1. We now have that the

edges from (i, t — l—i) go to (¿+1, —i — 1) and (*, — i) and have

completed an explicit isomorphism between Gt and H.

Theorem 2. // i = 2, 4 or an odd prime, and H is a graph with t2

vertices that belongs to Pt(x), then H=Gt.

Proof. We shall continue to use the notations of the lemmas.

If t = 2 the classes /,- of Lemma 2 each have 2 elements ; hence the

only possible distribution of edges is that of G2.

If i = 4 then the eigenvalues of A are ±2, ±2i, +l±i and 0. By

Lemma 3 the eigenvalues ±2, +2i are simple and the eigenvalues

+ l±i have the same multiplicity, m say. Since A is of order 16 the

multiplicity of 0 is 12— 4m; hence m= 1 or 2. Suppose first that m = l,

i.e., the multiplicity of 0 is 8. Now, by Lemma 4, each Ai is of rank 2

and must therefore be of the form PiBQi, where Pf, Qt are permuta-

tion matrices and

110   0

110   0

0   0    1    1 '

0   0   11

B =

Let J* be the 4X4 matrix of all l's. It may be readily verified that

for a permutation matrix R, BRB is one of 25, 2/4—25 or Ja, and

that JiRB is 2/4. Hence

A!A2A3Aa = PiBQiPtBQiPsBQtPiBQt

= 8P1JBÖ4   or   8Px(/4 - B)Qi   or   4Pi/4Q4 = 4/4.

The third possibility cannot occur since, by Lemma 4, AiA2A$Aa is

of rank 2.
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Now A4 is of the form

AiA2AsAi 0 0 0

0 A2AsAiAi 0 0

0 0 AaAiAiAi 0

0 0 0 AiAiA2Az,

and, as in the proof of Lemma 5, each of the diagonal blocks has the

same eigenvalues and hence the same trace. From (4.2), the elements

of AiAiAzA^are divisible by 8; similarly for A2A%A ^Ay A%A^AiA2 and
AtAiA2Az. It follows therefore that the trace of A* is a multiple of 32.

On the other hand, the trace of A*= £X4, the sum being over the

eigenvalues X of A. On the assumption that m — 1 these eigenvalues

are, 2, 2i, —2, —2i, 1+i, 1—i, —1+i, —1—i, and 0 with multiplicity

8. A direct computation shows that tr(^44) =48. This contradicts the

conclusion that 321 tr(^44) and thus demonstrates the impossibility of

the case m = 1.

In the remaining case for / = 4 the multiplicities of the eigenvalues

are the same as those of the adjacency matrix of G(. Hence the sum

of the squares of the moduli of the eigenvalues of A is 2i2, which is the

same as the sum of the squares of the elements of A. Therefore A is

normal. By Lemma 5, H=Gt-

Finally, if t is an odd prime, the eigenvalues of A are just 2cor and

u>r+o)' lor 0^r<s<t, and w a primitive ¿th root of unity. We note

that these numbers are all distinct. Now, by Lemma 3, 2cor is a simple

eigenvalue, and the eigenvalues cor+u' all have the same multiplicity.

This multiplicity must be 2 in order to account for all t2 eigenvalues

of A. We now have, as in the second case for / = 4, that A is normal,

and H^Gt.
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