THE POLYNOMIAL OF A DIRECTED GRAPH
A. J. HOFFMAN! AND M. H. MCANDREW

1. Introduction. In a recent paper [1], the concept of the poly-
nomial of an undirected graph was introduced, and it was pointed
out that (i) a graph has a polynomial if and only if it is regular and
connected, and (ii) various previous studies (see the references in [1])
were special cases of the problem: find all graphs having the same
polynomial.

In this paper, we prove the analogue of (i) for directed graphs, and,
in addition, obtain some results of type (i) for a class of directed
graphs arising from a mesh on a torus.

2. On the existence of polynomials. Let G be a directed graph on
n vertices, with at most one edge from vertex 7 to vertex j, and no
edge from 7 to 7. For each vertex 7, let d; be the number of edges
with terminal vertex 7, ¢; be the number of edges with initial vertex 7.
G is said to be strongly regular if d;=¢;=d, 1=1, - - -, n; G is said
to be strongly connected if, for any vertices ¢ and j, 157, there is a
directed path from 7 to j.

Let A(G) =4 be the adjacency matrix of G, i.e.,

{1 if there is an edge from 1 to j,
i = .
0 otherwise.

Let u be the vector of order n every entry of which is unity, J the
matrix of order # every column of which is .

THEOREM 1. (i) There exists a polynomial P(x) such that
2.1) J = P(4)

if and only if G is strongly connected and strongly regular.

(ii)) The wunique polynomial of least degree satisfying (2.1) is
nS(x)/S(d) where (x—d)S(x) is the minimal polynomial of A and d is
the valence of G.

(iii) If P(x) is that polynomial of least degree satisfying (2.1), then
the valence of G 1is the greatest real root of P(x) =n.

Proor. Assume (2.1). Let 4, j be distinct vertices of G. By (2.1),
there is some integer % such that A* has a positive entry in position
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(4, j), i.e., there is some k-step path from ¢ to j. So G is strongly
connected. Further, from (2.1), J commutes with 4. But the (3, f)th
entry of AJ is e;, and the (z, j)th entry of JA4 is d;. Thus e;=d; for
all 7 and j, so G is strongly regular.

To prove the converse of (i), assume G strongly connected and
strongly regular. From the strong regularity, « is a left and right
eigenvector of A4, corresponding to the eigenvalue d. Hence, if d has
multiplicity greater than 1, it must have at least one more eigenvec-
tor associated with it. But from the strong connectedness, using a
standard argument [1], « is the only eigenvector corresponding to d.
It follows that, if R(x) is the minimal polynomial of 4, and if
S(x) =R(x)/(x—d) then S(d) #0. We then have

(2.2) 0 = R(4) = (4 — dI)S(4).
Since R(4)v=0 for all vectors v, it follows from (2.2) that
(4—-dI)S(4)v=0,

so S(4)v=au for some a.
If (v, u) =0 then (4%, u) = (v, (AT)*u) =d*(v, u) =0 for every k and
so (S(A4)v, ) =0. Therefore, 0=(S(4)v, u) =(au, u) =na, i.e., a=0.
Thus S(4)v=0 for all v such that (v, ) =0; further, S(4)u = S(d)u.
Hence #S5(4)/S(d) =J, i.e. a polynomial which will accomplish (2.1)
is

n
(2.3) P(x) 5@ S(x).
This completes the proof of (i); (ii) follows since (2.3) has smaller
degree than the minimal polynomial of 4.

To prove (iii) we note that 4 is non-negative and has row and
column sums d. Thus, by [2], the eigenvalues of 4 are all of absolute
value =d. The roots of P(x) are eigenvalues of A and hence for real
x>d, |P(x)| is a monotone increasing function of x. From (2.3),
P(d) =7 and so, since P(x) is a real polynomial, P(x) >n for x>d.

This completes the proof; of the theorem. We call (2.3) the poly-
nomial belonging to G (and also say that G belongs to the poly-
nomial).

3. A graph on a torus. For any positive integer ¢ let G, be the graph
whose vertices are all ordered pairs (¢, ) of residues mod ¢ and whose
edges go from (¢, j) to (¢, j+1) and (41, j) for all 4, j. Clearly G, is
strongly regular of valence 2, and strongly connected. We now de-
rive its polynomial.
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Let A\, p be arbitrary (not necessarily distinct) fth roots of unity.
Let v be the vector whose (4, j)th component is Aui. If 4 is the
adjacency matrix of G, then Av= (A-+u)v. Further, different vectors
v1, v have as their scalar product Y _;,; Nud\i-iuz 7, which is zero unless
M=M\e and py=p,. Hence the set of vectors corresponding to the 2
choices of the pair \, u form a complete orthogonal set of right eigen-
vectors. From this it follows that 4 is normal and that the minimal
polynomial of 4 has no repeated factors. Hence, by Theorem 1, the
polynomial belonging to G, is

tz
(3.1) Py(x) = 5@ Si(x),
where
Si(x) = JIRCRT) ,

the product being taken over all distinct p of the form A4y, where
A, u are tth roots of unity. For example,

Py(x) = —21— x(x + 2),
Py(x) = 1i2 (4 )2+ 22 + 4),

Py(x) = gla 2(x + 2)(x? 4+ 4) (x4 + 4).

4. Does P(x) characterize G;? In view of the investigations of
comparable questions for undirected graphs, it is natural to ask: if
H is a graph with 2 vertices, and P,(x) is the polynomial of H, is
H=G,? We know of no instance in which H. ;"l*_iGt, but have only been
able to prove H=G, if ¢ is a prime or if {=4. Before specializing to
those cases, however, we begin with a few lemmas. We assume H
has #2 vertices and belongs to Ps(x), and 4 is the adjacency matrix of
H.

LeMMA 1. H is strongly connected and strongly regular of valence 2.

Proor. That H is strongly regular and strongly connected follows
from the fact that H has a polynomial. By Theorem 1 (iii) the valence
of H and the valence of G;both equal the largest real root of P(x)=n
and so the valence of H=the valence of G,=2.

LEMMA 2. The vertices of H can be partitioned into t sets T; (1EZ,,
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the ring of residue classses mod t), such that every edge in H goes from
a vertex in T to a vertex in Ty

ProoF. From the proof of Theorem 1, we know that 2 is an eigen-
value of A of multiplicity one, and every eigenvalue is of absolute
value at most 2. Because 2\ is also an eigenvalue of 4 for N any fth
root of unity, it follows [2] that 4 can be conceived as having the
appearance

0 Ao
0 4, 0
(4.1) 0 ,
A
A 0i

where each diagonal block of 0's is square. But each A4; must also
be square, since the numbers of 1’s in 4, is twice the number of rows
of A; and also twice the number of columns. Thus 4; is of order ¢,
which implies the lemma.

LEMMA 3. Let t>2, let w be a primitive tth root of unity and let N be
any tth root of unity. Then for anyr, s with (s,t) =1, 1+w"and N(1+wr)
have the same multiplicities as eigenvalues of A.

ProoF. Let x be an eigenvector of A corresponding to the eigen-
value «, and let x=(xy, - - -, %¢—1) denote the partitioning of the
coordinates of x corresponding to (4.1). We have 4x;;.1=ax;. Thus
AN Hx,0) =al(Nx;). Thus (xo, Axy, - - -, N~ l%,) is an eigenvector
of A corresponding to the eigenvalue Aax. Since the minimal poly-
nomial of 4 has no repeated factors, the multiplicity of an eigenvalue
is just the dimension of the corresponding space of eigenvectors and
so the multiplicities of @ and A« are the same. Finally the multiplici-
ties of 1+w" and 14w™ are the same, since these are algebraic con-
jugates and the characteristic polynomial of 4 is rational. This con-
cludes the proof of the lemma.

Note in particular that 2\ is a simple eigenvalue of 4.

LEMMA 4. Let A be of the form (4.1) and of rank r. Then for 0 <1
=t—1,720, the rank of A;A;1A e+ - - Aiyj isr/t, where addition of
suffixes is taken mod ¢.

PROOF. Let m; be the rank of 4;. Then Y;m;=the rank of 4 =r.
Since the minimal polynomial of 4 has no repeated factors, 4 =S—'DS
for some nonsingular S and diagonal D. Hence, the rank of A!is
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also 7. Now A! consists of diagonal blocks 44, - - - A4y, 414, -
A, Ay, + -+, AeqAdy+ - + A1s. The rank of each block is at most
m=min; m;; hence, Y .;m;=r=tm and so m;=r/t for all . This
proves the lemma for j=0. The result for j >0 follows from a similar
consideration of 47,

LEMMA 5. Let t>2. If A is normal, then H=G,.

ProOF. Let K; be the undirected bipartite graph whose vertices are
the vertices of T; and T4, as defined in Lemma 2, and which has
an undirected edge joining x& T; and y& Ty, if and only if an edge
of H joins x to y.

We first show that K is a cycle of length 2¢. Since every vertex of
K, is of valence 2, K is the union of p; cycles for some p;=1. The
matrix AAT has 4 as an eigenvalue with multiplicity » ‘., p.. But
since 4 is normal, and 2\ (for N any #th root of unity) is a simple
eigenvalue of 4, 44T has 4 as an eigenvalue with multiplicity ¢.
Hence p;=1,4=0, - - -, £—1, which was to be proven.

Next, we show that trace A *=2¢2. Since each K is a complete cycle
the eigenvalues of A AT are the union of the eigenvalues of ¢ matrices
of order ¢ of the form 2I+P;+P] (i=0, - - -, t—1), where each P;
is a permutation matrix that represents a single cycle on ¢ letters.
Therefore, AAT has: 4 as an eigenvalue with multiplicity ¢; 24+N-+X
as an eigenvalue with multiplicity 2¢, for A =exp(2IIik/t), k=1, « - -,
[(¢(=1)/2]; and if ¢ is even, 0 as an eigenvalue with multiplicity ¢.

Since A is normal, these are the squares of the absolute values of
the eigenvalues of 4. Therefore, the number of eigenvalues of 4 of a
given absolute value (other than 2 or 0) is the same for each absolute
value. We also know from Lemma 3 that all eigenvalues of the same
absolute value occur equally often. It follows that 4 has the same
eigenvalues as the adjacency matrix for G;. But the trace of the ¢th
power of that matrix is 2£2, so trace 4t=2¢2

Since K, is a cycle of length 2¢, we may label the vertices of T
and Ti as (3, —12) and (¢4+1, —1), respectively (€ Z,), in such a way
that the edges from (4, —%) go to (¢+1, —4) and (4, 1 —4). Since 4 is
normal and there is just one vertex, namely (i, —i), which is the
initial vertex of edges to both (41, —1) and (i, 1 —14), it follows that
there is just one vertex, which we label (41, 1—%), which is the
terminal vertex of edges from both (41, —4) and (3, 1 —1). We now
have the vertices of T} and T labelled in such a way that the edges
from (i+1, —1) go to (142, —1) and (:+1, 1 —1). We may continue
labelling in this fashion the vertices of T3, Ty, « - -, Ti1. Let py
be the number of paths of length t—1 from (i, —3) to (j, t—1—j).
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Then p;is (') where m is the least positive residue (mod ¢) of j—1,
for the normality of 4 implies that the count of paths mimics the
Pascal triangle. If (a;, t—1—a;) and (B8;, t—1—p0,) are the vertices
of T._1 which are initial vertices of edges going to (¢, —1%), then the
number of paths of length ¢ from (3, —1) to itself is p;,o;+p:5;. By
hypothesis, trace 4¢= 2. Since the diagonal blocks of 4! are cyclic
permutations of the factors 4y, 4, « -+, 4, each block has the same
trace, 2¢. Hence,

-1
D (Pivas + pisy) = 2t
=0

Since each p;,qo; and p, s, is at least 1, it follows that p;,q., and p; s, are
exactly 1 and that «, §; are just ¢ and ¢—1. We now have that the
edges from (¢, t—1—1%) go to (341, —i—1) and (4, —7) and have
completed an explicit isomorphism between G; and H.

THEOREM 2. If t=2, 4 or an odd prime, and H is a graph with £
vertices that belongs to P(x), then H=G,.

Proor. We shall continue to use the notations of the lemmas.

If t=2 the classes T; of Lemma 2 each have 2 elements; hence the
only possible distribution of edges is that of G..

If t=4 then the eigenvalues of 4 are +2, +2¢, £144 and 0. By
Lemma 3 the eigenvalues +2, +2¢ are simple and the eigenvalues
+1+4 have the same multiplicity, m say. Since 4 is of order 16 the
multiplicity of 0 is 12 —4m; hence m =1 or 2. Suppose first that m=1,
i.e., the multiplicity of 0 is 8. Now, by Lemma 4, each A4, is of rank 2
and must therefore be of the form P;BQ;,, where P;, Q; are permuta-
tion matrices and

1100
1100
B = .
0011
0011

Let J, be the 4X4 matrix of all 1’s. It may be readily verified that
for a permutation matrix R, BRB is one of 2B, 2J,—2B or J,, and
that J.RB is 2J,. Hence

A1A2A3A4 = PlBQleBQzPsBQ3P4BQ4
= 8P1BQ4 or 8P1(J4 -_ B)Q4 or 4P1J4Q4 = 4]4.

The third possibility cannot occur since, by Lemma 4, 414,434, is
of rank 2.

4.2)
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Now A4 is of the form

A142434,4 0 0 0
0 AsA3AsA, 0 0
0 0 AsA4AqA, 0
0 0 0 A4A14:45

and, as in the proof of Lemma 5, each of the diagonal blocks has the
same eigenvalues and hence the same trace. From (4.2), the elements
of 414,434, are divisible by 8; similarly for 4;434 44,1, AsA4A142 and
A4A14545. 1t follows therefore that the trace of A*is a multiple of 32.
On the other hand, the trace of A= Z)\‘, the sum being over the
eigenvalues N of 4. On the assumption that m =1 these eigenvalues
are, 2, 24, —2, —24,144,1—4, —1+44, —1—4, and 0 with multiplicity
8. A direct computation shows that tr(4¢) =48. This contradicts the
conclusion that 32|tr(4¢) and thus demonstrates the impossibility of
the case m=1.

In the remaining case for t=4 the multiplicities of the eigenvalues
are the same as those of the adjacency matrix of G,;. Hence the sum
of the squares of the moduli of the eigenvalues of 4 is 2#2, which is the
same as the sum of the squares of the elements of 4. Therefore 4 is
normal. By Lemma 5, H=~G,.

Finally, if ¢ is an odd prime, the eigenvalues of 4 are just 2w" and
w'+w® for 057 <s<t, and w a primitive ¢th root of unity. We note
that these numbers are all distinct. Now, by Lemma 3, 2w" is a simple
eigenvalue, and the eigenvalues w"4w* all have the same multiplicity.
This multiplicity must be 2 in order to account for all # eigenvalues
of A. We now have, as in the second case for =4, that 4 is normal,
and H EG;.
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