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Introduction. Our point of departure is the following remark of

Aronszajn and Smith, the «-dimensional case of a (real) Hilbert-space

theorem contained in [l]. Let A be a real symmetric nonsingular

matrix, with associated quadratic form (Ax, x). A necessary and suffi-

cient condition that the elements of A~l all be non-negative is that,

to every xERn (22" = the space of real «-tuples), there exists a cor-

responding x with the properties (a) £,-2: |x,|, t = l, • ■ • , n and

(b) (Ax, x)^(Ax, x).

If we introduce the orthant Pi = {x: x.-^O, i= 1, 2, • ■ • , n}, then

the remark states that a necessary and sufficient condition for

A~1PiQPi is that, to each x corresponds an x satisfying (a) x + xGPi

and (b) (Ax, x)^(Ax, x). We give below a modification of the

Aronszajn and Smith theorem, obtained by a modification of their

proof whose essentials are already contained in [l]. The purpose of

the modification is to replace the positive orthant Pi by an arbitrary

convex cone P. Indeed, the use of reproducing kernels in [l ] need-

lessly restricts considerations in «-space there to cones with « linearly

independent generators. (With a suitable scalar product, and re-

ferred to a suitable basis, such a cone is essentially the non-negative

orthant Pi above.) By contrast, the theorem as formulated below

exploits their considerations geometrically, without the use of repro-

ducing kernels, extending its scope. In particular, the same remark

holds for certain cones other than Pi in «-space which have infinitely

many generators, and for which the methods of [l ] cannot apply

directly. Throughout we use the notion of the dual P* of a convex cone

P:P*= {x: (y, x)^0 all yEP} or, more briefly, P*= {x: (P,x)^0}.

Let F be a real Hubert space whose scalar product is written (x, y)

and let P he a closed convex cone in V. We consider a map of V onto

itself by a nonsingular self-adjoint operator B (that is, (Bx, y)

= (x, By) for all x and y). The cone P is mapped into the set 23P,

which is easily seen to again be a cone. How is the dual (BP)* of this

new cone related to P*, the dual of P? The answer is evident:
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(BP)* = {x: (BP, x) è 0} = {x: (P, Bx) ^ 0}

= {x:BxQP*\ = B-\P*).

(That is, P* transforms contragrediently.)

Let us say that a cone is obtuse if PZ)P*, acute if PQP*, and self-

dual if both inclusions hold. For example, the positive orthant in

Rn= {x: XjgïO, ¿=1, • ■ ■ , n], is self-dual. The terminology is mo-

tivated by the fact that, in two dimensions, a cone is acute (obtuse)

according to this definition if and only if its central angle is at most

(at least) tt/2. For later convenience we formulate here

Lemma 0. BP is obtuse iff B~2P*QP.

Proof. This is immediate from (BP)* = B~1P*. We remark that

the definition of P* and, hence, of obtuseness depend on the choice of

scalar product.

We next introduce the ordering on V induced by P: x^O if and

only if xQP, and x^y if and only if x — y^0. The analogue of the

condition (a) of the introduction for cones P other than the non-

negative orthant is xè+x, or, equivalently, x + xQP. We observe

that this implies xSïO, or, equivalently, xQP.

Lemma 1. A sufficient condition that a closed convex cone Q be obtuse

with respect to a given scalar product is that, given uQV, there exists

a ü such that (a) ü^+u (with respect to Q) and (b) (ü, u) g (u, u).

Remark. It is sufficient for such ü to exist only for uQQ*, as the

proof below shows.

Proof. We must show Q* QQ. Given any u and a corresponding ü,

form u+ = (ü+u)/2, u~ = (ü — u)/2. Clearly, m+^0, w-^0, (w+, u~)

= ((«, u) — (u, m))/4^0 and ü = u++u~. Let it now be assumed that

(c) uQQ*. We will establish the desired result by showing (a), (b) and

(c) imply u = ü, for we have already observed that (a) implies üQQ.

To begin with, («+, u~) ^0. Since u+, u~ are in Q, while uQQ*, we

have (u, u~) ^ 0. But (u, u~) = (u+, tf~) — (u~, u~) ^ 0 implies, in virtue

of the above inequalities, that (u+, u~)=0 and —(u~, u~)=0 since

each is nonpositive and their sum non-negative. We conclude that

u~ = 0, and so ü = u. Since üQQ, we obtain uQQ, i.e., Q*QQ.

Lemma 2. The sufficient conditions (a) and (h) stated in Lemma 1 are

also necessary: given that QZ)Q*, then, for each uQ V, there exists a

ü such that (a) «^ ±u and (b) (ü, u) ^ (u, u).

Proof. Given that Q is obtuse, and given an arbitrary vector u, we

must find the corresponding ü. Let u+ = orthogonal projection of u
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on Q = closest element of Q to u; let «_ = orthogonal projection of

— u on Q= —(orthogonal projection of u on —Q).

We assert that u+ — uEQ* and U-+uEQ*. In fact, the statement

u+ — uEQ*, together with (u+ — u, u+) =0, is the analog, for cones, of

the well-known orthogonality relation that characterizes projections of

a subspace M: the vector u+ol Q minimizing \\u— v\\2 for all choice of

u — (zí++/í>)|2 = ||m- |2 for arbitrary vi
U

IQ andv in Q must make

ièO. Thus \\u-u+\2-2t(u-u+, v)+t2\\v\\2^\\u-u+\\2 for all /^0,

and, therefore, (u+ — u, v) =^0, i.e., u+ — uEQ*. If we examine the case

v = u+ and |/| small, we find, moreover, (u — u+, u+)=0. Similarly,

u_+uEQ* and (u-+u, w_)=0. Thus, if we let ü = u++u-, we

have ü±uEQ* + QCQ, which is condition (a). We need only verify

(b): (ü, ü)^(u, u).  However, we  recall

(v, w) =0. In particular,

\v±w 2 = \\v r  + \\w 2 if

u+
u

2

u
+ 7

u+     u+ — u

2 2

U-     «_ + u

7 + "

u

2

u

2

= \\u+ + «-II2 = \\u+ — u/2 + U- + u/2\and,     therefore,     || i

^(||«||/2 + ||«||/2)2 = ||«||2.

Theorem. A necessary and sufficient condition that a positive definite

self-adjoint operator A satisfy A~lP* CP is that, for any x, there exists

an x such that (a) x^±x (i.e., x±xEP) and (h) (Ax, x) ^ (^4x, x).

Proof. Since A =BB* where B itself is self-adjoint, we may write

A~1P*CP in the form B~1P*CBP. Letting Q = BP, the inclusion

relation of the theorem becomes the condition that Q he obtuse by

Lemma 0. Let Bx = u, Bx = x. The condition x^ ±x with respect to

the ordering induced by P is equivalent to ü 2: + u with respect to the

ordering induced by Q = BP. Also, (^4x, x) = (Bx, Bx) = (u, u) and

(^4x, x) = (ü, u). Thus the theorem is transferable, under the

mapping by B, to a necessary and sufficient condition that the cone

Q be obtuse. The necessity and sufficiency are established in the two

previous lemmas.

Corollary 1. If P = P*, the above is a necessary and sufficient con-

dition that A~lP CP- If the cone P is generated by « independent vectors,

then P=P* for any choice of scalar product rendering these vectors

orthogonal. The theorem then is applicable to those A which are positive

definite and self-adjoint with respect to such a scalar product; in this
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form, the theorem reduces to the case discussed in [l], which considers,

without further loss of generality, the case V=Rn, P = positive orthant,

and the usual scalar product. However, there are cones for which P=P*

and yet are not orthants no matter what the choice of scalar product since

they do not have a set of n generators (for example, the Lorentz or right

circular cone, {x: Xi^(xl+xl+ • • • +xn)112}). For these cones the

theorem generalizes the result in [l].

Remarks. (1) In general, the theorem stated here is a modification

rather than a generalization of that in [l], since A~1P*QP neither

implies nor is implied by ^4-1PC-P- However, it is interesting to ob-

serve that if P is acute (P QP*), then A~XP* QP=^A~XP* QP*, while

if P is obtuse, A-1PQP=^A~1P*QP. Thus (a) and (b) are sufficient

for A_1P*QP* and necessary for A_1PQP in the acute and obtuse

cases, respectively.

(2) A closed convex cone P in V with vertex 0 determines a like

cone PM = MP\P in any closed subspace M and the scalar product

in V restricts to a scalar product in M. Thus we can introduce a

relativized notion of obtuseness for Pm- It is easy to see that the rela-

tive dual of Pm contains P*i~\M, and, therefore PM is always obtuse

if P is. The content of Lemmas 1 and 2 is that the obtuseness of P

is equivalent to the relative obtuseness of Pm for those two-dimen-

sional subspaces M spanned by vectors u+ and w_ which arise by

projecting an arbitrary u on P and —P. In particular, a cone is obtuse

if its two-dimensional sections with nonempty relative interior are all

obtuse. I know no direct proof of this.
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