A SEQUENCE OF (± 1)-DETERMINANTS WITH LARGE VALUES

G. F. CLEMENTS AND B. LINDSTRÖM

1. Introduction and statement of results. Any positive integer m can be uniquely represented in the binary form

$$
\begin{equation*}
m=2^{n_{1}}+2^{n_{2}}+\cdots+2^{n t} \tag{1.1}
\end{equation*}
$$

where $n_{1}>n_{2}>n_{3}>\cdots n_{t} \geqq 0$ are integers. Put $\alpha(m)=t, \alpha(0)=0$ and $A(n)=\alpha(0)+\alpha(1)+\cdots+\alpha(n)$ for $n=0,1,2, \cdots$. The function $A(n)$ was studied by Cheo and Yien [1], who proved that

$$
\begin{equation*}
A(n)=(n / 2) \log _{2} n+O(n) . \tag{1.2}
\end{equation*}
$$

Next, let $g(n)$ be the maximum of determinants of $n \times n$ matrices with all entries +1 or -1 . J. H. E. Cohn [2] has recently shown in a nonconstructive way that

$$
\begin{equation*}
n^{(n / 2)(1-C(n))} \leqq g(n) \leqq n^{n / 2}, \tag{1.3}
\end{equation*}
$$

where $C(n)$ is non-negative and goes to 0 as $n \rightarrow \infty$.
The purpose of this paper is to gain information about $C(n)$ and the last term in (1.2). We shall prove the following theorems:

Theorem 1. $2^{A(n)}$ is the determinant of a square matrix of order $n+1$ with all entries +1 or $-1, n=1,2,3, \cdots$.

Theorem $2.0 \leqq(n / 2) \log _{2} n-A(n-1)<(n / 2) \log _{2}(4 / 3), n=1$, $2,3, \cdots$. The lower bound is attained for $n=2^{k}, k=0,1,2, \cdots$, and only then. The factor $\log _{2}(4 / 3)$ can not be replaced by a smaller number.

The following corollary is immediate from the theorems:
Corollary. $n^{(n / 2)(1-\log (4 / 3) / \log n)}<g(n) \leqq n^{n / 2}$.
2. Proof of Theorem 1. For any two positive integers i, j let $\alpha(i, j)$ be the number of common terms in the representations (1.1) of i and j. If $i, j \geqq 0$ and at least one is 0 then put $\alpha(i, j)=0$. Let $M(n)$ denote the matrix

$$
M(n)=\left(a_{i j} j_{i, j=0}^{n}, \quad a_{i j}=(-1)^{\alpha(i, j)}\right.
$$

Now we prove for $0 \leqq n<2^{k}, k=0,1,2, \cdots$,
Presented to the Society, January 27, 1965; received by the editors March 5, 1964.

$$
\begin{equation*}
\operatorname{det} M\left(2^{k}+n\right)=(-2)^{n+1}\left(\operatorname{det} M\left(2^{k}-1\right)\right)(\operatorname{det} M(n)) \tag{2.1}
\end{equation*}
$$

Write $\mu^{\prime}=2^{k}+\mu$ and $\nu^{\prime}=2^{k}+\nu$, where $0 \leqq \mu, \nu \leqq n$. Then we get $a_{\mu^{\prime} \nu}$ $=a_{\mu \nu}, a_{\mu^{\prime} \nu^{\prime}}=-a_{\mu \nu}$. Subtracting the ($\mu+1$)st row in $M\left(2^{k}+n\right)$ from the $\left(\mu^{\prime}+1\right)$ st row, we get the row $\left(0, \cdots, 0,-2 a_{\mu 0},-2 a_{\mu 1}, \cdots,-2 a_{\mu n}\right)$ with $2^{k} 0$'s. If we perform this subtraction for $\mu=0,1, \cdots, n$, the new matrix has the same determinant as $M\left(2^{k}+n\right)$. Now (2.1) follows by the expansion theorem of Laplace. From $\alpha\left(2^{k}+n\right)=\alpha(n)+1$, $0 \leqq n<2^{k}$, we conclude that

$$
\begin{align*}
& A\left(2^{k}+n\right)=A\left(2^{k}-1\right)+A(n)+n+1 \tag{2.2}\\
& 0 \leqq n<2^{k}, k=0,1, \cdots
\end{align*}
$$

By (2.1) the same relation, with " B " instead of " A," is satisfied by the function $B(n)=\log |\operatorname{det} M(n)| \quad$ (logarithms are taken to the base 2). Now one easily proves by induction over k that $A\left(2^{k}+n\right)$ $=B\left(2^{k}+n\right), 0 \leqq n<2^{k}, k=0,1,2, \cdots$. Thus $|\operatorname{det} M(n)|=2^{A(n)}$, $n=0,1,2, \cdots$. If necessary, we change signs in a row or column, and the proof is complete.
3. Proof of Theorem 2. The left inequality in Theorem 2 follows from Theorem 1 by the aid of Hadamard's inequality. By (2.2) we have $A\left(2^{k+1}-1\right)=2 A\left(2^{k}-1\right)+2^{k}, k=0,1,2, \cdots$, and so, by induction,

$$
\begin{equation*}
A\left(2^{k}-1\right)=k 2^{k-1}, \quad k=0,1,2, \cdots \tag{3.1}
\end{equation*}
$$

By (3.1), equality holds in Theorem 2 if $n=2^{k}$. Since n and $A(n-1)$ are integers, equality can hold only if $n=2^{k}$.

The right inequality will be proved by induction over k. We shall prove that if

$$
\begin{equation*}
A(n-1)>(n / 2) \log n-(n / 2) C, \quad 1 \leqq n \leqq 2^{k} \tag{3.2}
\end{equation*}
$$

then this inequality holds for n^{\prime} in $2^{k}<n^{\prime} \leqq 2^{k+1}$, if C is properly chosen. Put $n^{\prime}=2^{k}+n$, where $1 \leqq n \leqq 2^{k}$. By (2.2) and (3.1) we have

$$
\begin{equation*}
A\left(n^{\prime}-1\right)=k 2^{k-1}+A(n-1)+n \tag{3.3}
\end{equation*}
$$

If $f(x)$ is a convex function and $0<a<1, a+b=1$, then $f(x+y)$ $\leqq a f(x / a)+b f(y / b)$. This yields, for the function $x \log x$ with $x=2^{k}$ and $y=n$,

$$
\begin{equation*}
n^{\prime} \log n^{\prime} \leqq k 2^{k}+n \log n-2^{k} \log a-n \log b \tag{3.4}
\end{equation*}
$$

From (3.2), (3.3) and (3.4), we then find that

$$
A\left(n^{\prime}-1\right)-\left(n^{\prime} / 2\right) \log n^{\prime}+\left(n^{\prime} / 2\right) C>\left(1+\frac{1}{2} \log b\right) n+(C+\log a) 2^{k-1}
$$

Both parentheses vanish if $b=1 / 4, a=3 / 4, C=\log (4 / 3)$, and (3.2) holds for n in $1 \leqq n \leqq 2^{k+1}$. The right inequality in Theorem 2 holds for $n=1$ and so for $2,3, \cdots$.

Finally, we prove that $\log (4 / 3)$ cannot be replaced by a smaller number in Theorem 2. Consider the sequence

$$
n_{k}=4^{k}+4^{k-1}+\cdots+4^{0}=(1 / 3)\left(4^{k+1}-1\right), \quad k=0,1,2, \cdots
$$

By (2.2) and (3.1) we have

$$
A\left(n_{k}-1\right)=k 4^{k}+A\left(n_{k-1}-1\right)+n_{k-1} .
$$

From this it follows easily by induction that

$$
\begin{equation*}
A\left(n_{k}-1\right)=k n_{k}, \quad k=0,1,2, \cdots \tag{3.5}
\end{equation*}
$$

Furthermore,
(3.6) $\quad \frac{1}{2} \log n_{k}=k+1-\frac{1}{2} \log 3+O\left(4^{-k}\right), \quad k=0,1,2, \cdots$.

We get, by (3.5) and (3.6),

$$
A\left(n_{k}-1\right)-\left(n_{k} / 2\right) \log n_{k}=-\left(n_{k} / 2\right) \log (4 / 3)+O(1)
$$

and the theorem is proved.

References

1. P. Cheo and S. Yien, A problem on the k-adic representation of positive integers, Acta Math. Sinica 5 (1955), 433-438.
2. J. H. E. Cohn, On the value of determinants, Proc. Amer. Math. Soc. 14 (1963), 581-588.

University of Colorado and University of Stockholm

