A LOCALLY COMPACT METRIC SPACE IS ALMOST INVARIANT UNDER A CLOSED MAPPING

EDWIN DUDA

- 1. Introduction. For a given mapping (continuous transformation) of a topological space X onto a topological space Y, it has always been of interest to determine what properties of X carry over to Y. For example, if f is a closed mapping, then normality [1] and paracompactness [5] are invariants. If X is a metric space and f is a closed mapping, then, as a consequence of results by Vainstein [2], Whyburn [1], and Stone [4], it is known that Y is first countable if and only if each point inverse has a compact frontier. A set S of a space X is said to be a scattered set if every subset of S is a closed subset of X. The main result of this paper shows that the image Y, of a locally compact metric space X under a closed mapping f, minus a scattered set S is also a locally compact metric space. In addition, if X is separable, then S has at most a countable number of points. In case the mapping is also an open mapping, the results are stated in [3], [4], [6] and [7].
- 2. Notation. For a metric space, ρ is used as the distance function. The frontier of a set A in a metric space X is the closure minus its interior relative to X and is denoted by Fr A. An inverse set of a mapping f of X onto Y is any subset A of X for which $A = f^{-1}f(A)$. Other undefined terms can be extracted from [1], [4] and [5].

3. Main result.

THEOREM. Let f be a closed mapping of a locally compact metric space X onto a topological space Y. If S is the set of all y in Y such that the frontier of $f^{-1}(y)$ is not compact, then S is a scattered set and Y-S is a locally compact metric space. Moreover, if X is separable, then S is countable.

To facilitate the proof of the main theorem, the following lemma is established.

LEMMA. Let f be a closed mapping of X onto Y, where X is a locally compact metric space. If F is the union of the point inverses which are not compact, then

(i) F is a closed set;

Presented to the Society, November 16, 1963; received by the editors December 10, 1963.

- (ii) for an arbitrary compact set K in X, only a finite number of non-compact point inverses can intersect K;
 - (iii) any inverse set A contained in F is a closed subset of X.

PROOF. If there are no compact point inverses, then F = X and F is closed. Suppose that $f^{-1}(y)$ is a compact point inverse. Let U be an open set containing $f^{-1}(y)$ and such that \overline{U} is compact. The set $f^{-1}f(X-U)$ is closed and its complement is an open inverse set V containing $f^{-1}(y)$ and contained in U. Each compact point inverse is contained in such a set so that X-F is an open set and consequently F is a closed set.

To prove (ii), suppose K is a compact set in X and $f^{-1}(y_n)$ is a sequence of distinct noncompact point inverses, each of which intersects K in a nonempty set. We can assume that $\lim \inf f^{-1}(y_n) \neq \emptyset$ and, hence, if $L = \limsup_{n \to \infty} f^{-1}(y_n)$, then L is in some point inverse. Suppose, further, that L is not in any one of the $f^{-1}(y_n)$. If L is a compact set, then there is an open set W containing L with \overline{W} compact. Since no $f^{-1}(y_n)$ is compact, each one has at least one point x_n not in \overline{W} . The set $\bigcup_{n=1}^{\infty} x_n$ is a closed set but $f^{-1}f(\bigcup_{n=1}^{\infty} x_n) = \bigcup_{n=1}^{\infty} f^{-1}(y_n)$ is not a closed set. This is contrary to f being a closed map. Thus, L is not compact. If L is not compact, it contains an infinite sequence of distinct points y_n , with $\limsup y_n = \emptyset$. There is an $f^{-1}(y_{n_1})$ and a point x_1 of $f^{-1}(y_{n_1})$ such that $\rho(x_1, y_1) < 1$, an $f^{-1}(y_{n_2})$ and a point x_2 of $f^{-1}(y_{n_2})$ such that $\rho(x_2, y_2) < 1/2$, and, in general, an $f^{-1}(y_{n_k})$ and a point x_k of $f^{-1}(y_{n_k})$ such that $\rho(x_k, y_k) < 1/k$. The sequence x_k must have $\limsup x_k = \emptyset$, otherwise $\limsup y_k \neq \emptyset$. The mapping f is closed and $\bigcup_{k=1}^{\infty} x_k$ is a closed set, hence $f^{-1}f(\bigcup_{k=1}^{\infty} x_k) = \bigcup_{k=1}^{\infty} f^{-1}(y_{n_k})$ is closed. But $\bigcup_{k=1}^{\infty} f^{-1}(y_{n_k})$ must have a limit point in $K \cap L$ and this gives a contradiction.

To prove (iii), let A be an inverse set contained in F. If A is not closed, then there is a sequence x_n of distinct points of A converging to a point x not in A. Since point inverses are closed sets we can assume that $f^{-1}f(x_i) \cap f^{-1}f(x_i) = \emptyset$ if $i \neq j$. The set $K = \bigcup x \bigcup_{n=1}^{\infty} x_n$ is compact and an infinite number of distinct noncompact point inverses meet K. This contradicts (ii) and therefore A is closed.

PROOF OF THE THEOREM. Let B be any subset of S. The set $f^{-1}(B)$ is closed in X by (iii) of the Lemma. The mapping f is closed, hence $ff^{-1}(B) = B$ is closed, and S is a scattered set. The set Y - S is the continuous image of $X - f^{-1}(S)$ under f and the mapping f restricted to $X - f^{-1}(S)$ is a closed mapping of $X - f^{-1}(S)$ onto Y - S. By a result of Stone [4] (see Theorem 1), we can say that Y - S is metrizable.

To show Y-S is locally compact, let $y \in Y-S$ and suppose that $\operatorname{Fr} f^{-1}(y) \neq \emptyset$. Let W be any open set containing $\operatorname{Fr} f^{-1}(y)$ and such

that \overline{W} is compact. If y is not interior to f(W), then there exists a sequence of points y_n of (Y-S)-f(W) converging to y. Since f is a closed mapping, $\limsup f^{-1}(y_n) \subset \operatorname{Fr} f^{-1}(y)$. Thus, infinitely many of the $f^{-1}(y_n)$ meet W, which in turn implies that infinitely many of the y_n are $\inf f(W)$. This gives a contradiction, hence y is interior to f(W). The interior points of f(W) form an open set whose closure is contained in the compact set $f(\overline{W})$. If $\operatorname{Fr} f^{-1}(y) = \emptyset$, then $\{y\}$ is an open set containing y and $\{\bar{y}\}$ is compact. Thus Y-S is locally compact.

If X is separable, then X is a countable union of compact sets. Only a finite number of point inverses of points in S can meet any one of these compact sets. Thus $f^{-1}(S)$ is a countable union of single point inverses. Therefore S is countable.

4. Examples. To see that S in the theorem can be infinite consider the decomposition of the plane E_2 into the vertical lines whose equations are x=n, n an integer, and the individual points not on these lines. Let Y be the topological space determined by this upper semicontinuous decomposition of E_2 . The natural mapping of E_2 onto Y is a closed mapping and S in this case is denumerable.

The following example shows that if local compactness is dropped in the Lemma, then every conclusion must be omitted. Let X be the open unit disk in the plane union the points (0, 1) and (0, -1). Consider the decomposition of X into the sets determined by intersecting the graphs of x = 1/n, n a positive integer, and x = 0, with X, and the individual points not on these lines. Again, let Y be the topological space determined by this upper semi-continuous decomposition of X. The natural mapping of X onto Y is a closed mapping and no one of the conclusions of the Lemma are valid.

BIBLIOGRAPHY

- 1. G. T. Whyburn, Open and closed mappings, Duke Math. J. 17 (1950), 69-74.
- 2. I. A. Vainstein, On closed mappings in metric spaces, Dokl. Akad. Nauk SSSR (N.S.) 57 (1947), 319-321. (Russian)
- 3. A. D. Wallace, Some characterizations of interior transformations, Amer. J. Math. 61 (1939), 757-763.
- 4. A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690-700
- 5. E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828.
- 6. G. T. Whyburn, Continuous decompositions, Amer. J. Math. 71 (1949), 218-226.
- 7. V. K. Balanchandran, A mapping theorem for metric spaces, Duke Math. J. 22 (1955), 461-464.

University of Miami