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Let F be a field and F((T)) the field of formal power series over F.

Theorem. If Fis undecidable, then F((T)) is undecidable.

Remark. Malcev [l] obtained special cases of this result.

Proof. It suffices to show that the valuation subring A == F[[T]

is elementarily definable in F((T)) [3, Sec. 6]. Fix w>l such that

char(F) |w. An idea in J. Robinson [3] shows that A is definable in

terms of T:A=the set of x such that 3y[ym = l + Fxm]. By com-

pounding this idea and another trick we can get rid of T: A =the set

of x such that aw3yVwVxiVx2 3zVyiVy2[(3m = 1+^x7x2*VyîV 1

+wx"Vy2Vl+wx")/\um9^w/\ym = l+wxm]. Indeed, this follows

from the fact that A =Dweo Aw, where ^4„ = the set of x such that

3y\ym= i+wxm],UGCF((T)) has the following properties : (1) TEG;

(2) lor each wEG, Aw is closed under multiplication and its elements

have poles of bounded order. (1) shows that U„ee AWDA while (2)

gives the reverse inclusion.

Corollary. If char(F) = 0, then F is decidable if and only if F((T))
is decidable.

Proof. Combine the above theorem with Theorem 6 of Ax-

Kochen [4].

Finally, we note that the theorem, the corollary and their proofs

remain valid if F((T)) is replaced by any Hensel field valued in a Z-

group with residue class field F.
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