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throughout V. By hypothesis, however, | F\2 = F(F*K), and so F = 0

identically throughout V.

In particular, then, F vanishes identically in a neighborhood of x0.

Since x0 was arbitrary F vanishes identically and the proof is com-

plete.
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1. Introduction. This note is concerned with asymptotic behaviour

of long products of stochastic matrices of a given form. Its objects are:

(a) To prove that a theorem stated (but not proved) by the author

in a previously-published paper [2] is equivalent to one proved by

Wolfowitz in [l].

(b) To formulate a decision procedure for the above problem,

preferable to that given by Wolfowitz in [l].

(c) To solve a related problem.

Familiarity with the above two papers is desirable.

2. Definitions. (We adopt here some of the definitions used by

Wolfowitz.) A finite square matrix P = ||£,-,-|| is called stochastic if

pa^O for all i, j and 53 jpu=l for all i.
A stochastic matrix P is called indecomposable and aperiodic

(S.I.A.) if

Q = lim P"
n—»00

exists and all rows of Q are the same. |P| and 5(P) are defined as

I PI   = max I Pa I ,

d(P) = max max | phi — piti \ .
i      hh

With every stochastic matrix P we associate a finite graph having

n states (vertices)—n being the order of P—such that transition is
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possible from state i to state j iff pa>0; in that case we say that

state j is a consequent oí state i.

We also say that two states ii and i2 have a common consequent if

there is a state/ such that p¡¡j>0 together with />ij,->0.

Scrambling condition (Hajnal). A stochastic matrix is called scram-

bling if every pair of states in the associated graph has a common

consequent.

Hi condition. A stochastic matrix P satisfies the Hi condition if

there is k such that P* is scrambling.

Let Ai, ■ • ■ , Ak be any square matrices of the same order. A prod-

uct of t A's (repetitions permitted) is called a word of length t (in the

A's). If B=Ai • • • Aa is a word, then the word ^4a-r+i ■ • • Aa is

called the r-suffix of the given word B.

Wolfowitz's condition. A finite set of stochastic matrices A1, ■ ■ -,Ak

of the same order satisfies the IF-condition if any word in the A's

is S.I.A.
H4 condition. A set of matrices as above satisfies the H4 condition

(of order r) if there is r such that any word in the A's of length r or

more is a scrambling word.

3. Some preliminary lemmas.

Lemma 1. Given a stochastic matrix P; if P satisfies Hi, then P is

S.I.A.

This is Corollary 1 in [2].

Lemma 2. If Ai, ■ ■ ■ , Ak is a set of stochastic matrices of the same

order satisfying the W-condition, then there is t such that all the words in

the A's of length ^ t are scrambling.

This is Lemma 4 in [l].

Lemma 3. The H4 condition is equivalent to the W-condition.

Proof. Assume that the IF-condition is satisfied. Then there is /

such that all words in the A's of length ^l are scrambling by Lemma

2 ; hence the H4-condition is satisfied. Assume now that the ^-condi-

tion is satisfied and let B be any word in the .4's; then Bk is scram-

bling for some k, this implying that B satisfies Hi. By Lemma 1, B is

S.I.A. and the IF-condition is satisfied.

4. Definite sets of stochastic matrices. Consider a finite set of sto-

chastic matrices of the same order N = (Ai, ■ ■ • , Ak). It may be the

case that there exists an integer v such that any word B (in the A 's)

of length n^v satisfies:
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8(B) = O

i.e., all rows of B are the same (this was noted by Hajnal in [3]). In

that case we say that N is a definite set of matrices of order v.

It can be shown that if TV is a definite set, then the transition

probabilities relative to any word B in the A's of length ^v depend

only on the y-suffix of B.

Systems having similar properties are encountered in the theory of

finite automata (see Perles, Rabin, Shamir [4]).

The following theorem provides a decision procedure for finding

out whether a given set of matrices is definite.

Theorem 1. Let N be a finite set of stochastic matrices of the same

order ra. If N is a definite set, then N is definite of order ra — 1.

Proof. The above theorem was proved in [4] for the case where all

matrices in N are degenerate stochastic matrices (i.e. matrices with

exactly one unity in every row). The above proof may be used for

the present theorem, with the following modifications: A constant

matrix is a stochastic matrix with equal rows. (This generalizes the

definition in [4] but does not interfere with the proof.) Also, the

matrices in the set H (defined in [4]) are stochastic matrices (instead

of degenerate stochastic matrices) and the linear space V (defined

there) is taken over the real numbers (instead of the rational num-

bers) .

Example. Consider the following set of two 3X3 matrices:

Ax =

1/4    1/2    1/4-

1/8    1/2    3/8

[1/4    1/2    1/4.

A2 =

1/4    1/2    1/4]

1/6    1/2    1/3

11/4    1/2    1/4

Straightforward computation shows that

'■5/24    1/2    7/24'

Ai-Ai=   5/24    1/2    7/24,        A2-A2 =

.5/24    1/2    7/24,

and A2-Ai = Ai-Ai; Ax-A2 = A2-A2.

This set is therefore 2-definite.

'3/16 1/2 5/16

3/16 1/2 5/16

.3/16 1/2 5/16

5. Quasidefinite sets of stochastic matrices. Let N = (AU ■ ■ ■ , Ak)

be a finite set of stochastic matrices of the same order. It may be the

case that for any e there exists an integer v(e) such that any word B

(in the A's) of length n^v(e) satisfies:
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8(B) < «

i.e. all rows of B are approximately the same. In this case we shall

say that TV is a quasidefinite set.

It can be shown that for a quasidefinite set N the transition proba-

bilities relative to any word B are approximated by those relative to

its suffices—the longer the suffix, the closer the approximation.

It follows that quasidefinite systems are a natural generalization of

definite systems.

The following theorem was proved in Wolfowitz's paper [l].

Theorem 2. A finite set of stochastic matrices of the same order is

quasidefinite iff it satisfies the W-condition.

The following theorem was stated (but not proved) in the author's

paper [2]:

Theorem 3. A finite set of stochastic matrices of the same order is

quasidefinite iff it satisfies the H4 condition.

Theorem 3 can be proved independently of Theorem 2, but by

Lemma 3 the two theorems are equivalent and the proof is omitted.

6. Decision procedures. A decision procedure was given by Wolfo-

witz in [l ] for ascertaining whether a given set of stochastic matrices

is quasidefinite. The procedure is based on the following two asser-

tions (proved in the above paper).

First, it is proved that if a set of matrices Ai, ■ ■ ■ , A¡, of the same

order is such that all words in the ^4's of length smaller than a speci-

fied integer t are S.I.A., then all words in the ^4's are S.I.A. (i.e. the

set satisfies the IF-condition).

Secondly, it is shown that any word having a scrambling matrix as

a factor is S.I.A.

Using these two facts, one has to check all words in the ^4's of

length ^t, discarding all those with a scrambling matrix as a factor.

If, and only if, all these words are S.I.A., then the set is quasidefinite.

It can now be shown that the number / (definite in [l ]) in the above

decision procedure exceeds 2" ~n.

We give here a better decision procedure, based on the H4 condi-

tion and on the following

Theorem 4. 7/ a finite set N of stochastic matrices of order ra satisfies

the Hi condition, then it satisfies this condition of order v for some integer

v with:
1

v è — (3n - 2"+1 + 1).
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Proof. Suppose that there is a word B (in the A 's) of length ex-

ceeding the bound of the theorem and not scrambling. Then, there

are two states ¿i and i2 which do not have a common consequent by

B. Set

B = Bi- ■ ■ Bß

(the P's being matrices taken from the given set), and consider the

following sequence of unordered pairs of sets of states:

(a0, oto),  («i, ai),  (a2, a2), ■ ■ ■ , (a„, a„)

where a¿ = (ii), a2, = (i2) and a]+i, a2i+i are the consequents of the states

in a!,, a2 respectively by matrix Pi+i.

By the definition of the a's and of B, we have that all a's are non-

void sets and every pair of a's is a disjoint pair of sets. It can easily

be shown by a combinatorial argument that the number of different

unordered pairs of sets which are subsets of the set of all states and

have the above properties is ^(3" —2n+1 + l) (w being the number of

states). This implies that in the above sequence there are two equal

pairs, say

12 1        Í
(a,-, a,-) = (a*, ak),      j < k ^ ».

It follows that any word of the form:

Bi ■ ■ ■ Bj^iiBj ■ ■ ■ Bky Bk+i ■ ■ ■ Bn,       r = 1, 2 • • • ,

is not scrambling and the H4 condition is not satisfied. This proves

our theorem.

On the basis of this theorem a decision procedure can be formulated

for ascertaining whether a given set of matrices satisfies the H4 condi-

tion.

One has to check all words in the A's of length smaller than the

bound given in the theorem above (i.e., \i3n — 2n+l-\-\)). As in Wolfo-

witz's procedure, one may discard words having scrambling matrix

as a factor, as the H4 condition is directly based on the scrambling

property of the matrices and, as is easily shown, any matrix with a

scrambling matrix as a factor is itself scrambling. (This follows di-

rectly from our definition.)

Remark. Wolfowitz's decision procedure is in fact an improvement

on a procedure described by Thomasian in [5]. By Thomasian's pro-

cedure one must check all words of length 3s2*. From a practical

point of view, our procedure, although preferable to Wolfowitz's

(e.g. for w = 6 our bound is 301, while the number / as defined by
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Wolfowitz exceeds a billion), is difficult and for large n even im-

practicable; still, our bound is best, as can be shown by the following

example.

7. Example. Fix n, let K be a set of » states, and let the following

sequence be any enumeration of all different unordered pairs, of non-

void disjoint sets of states from K:

1212 12

(1) («o, oto),  (ai, ai), • • • , (ctk, ak),

such that the number of states in any set of the form ai = ct1yJo$ is not

smaller than that in the set a,_i for ¿= 1, 2, • • • , k. As stated before
k + l = ^(3n-2n+x+l).

If 4> is a set of states and A a stochastic matrix, Be. denote by A (<j>)

the set of states which are consequents of those in <p by A.

Let Ai, ■ ■ ■ , Ak be a set of stochastic matrices of order n, such

that:

if 4>n[K-Cti-i]   r* 0,

if <p Ç ai-!,
2

if <p Ç a<_i,

otherwise.

Note that the number of states in A i(<p) can be smaller than that in

4> for the second or third case in (2) only. This follows from the defini-

tion of sequence (1), and we shall refer to this property as the condi-

tional monotone property.

Note also that if (2) is satisfied for one element sets, it is satisfied

for any sets.

We claim that any set of matrices defined as above is quasi-

definite, but there is a word in the A's of length k which is not

scrambling.

Proof. The proof of the second assertion is immediate for the word :

Ai-As • ■ • Ak

is not scrambling by the definition of sequence (1) and by (2).

Assume now that the following word in the ^4's is not scrambling:

B = BVB2 ■ ■ ■ Bh       t > k,

i.e. there are two states ii and i2 not having a common consequent by

B. Set:

(¿1) = ß\\   <*i> - ßl;   ß) = 5,-CaLi)    and   ß] = S.-íjsLi)

(2) Am =

A'
1

a

a

a
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and consider the following sequence :

(3) (ßl, ßl), ■ ■ ■ , (ßl, ßl).
This is a sequence of unordered pairs of nonvoid disjoint (by assump-

tion) sets of states, and as t^k + i, the sequence contains at least

two equal pairs, say:

(4) (ßl, ßl) = (ßl ßl),        P< q.
Consider the following subsequence of (3) :

(5) (ßl, ßl),- ■ ■ , (ßl-i, ßl-i), (ßl, ßl), ■ ■ ■ , (ßl, ßl).
As before, we shall denote by /3¿ the set /3,=j3jW|32.

The matrix BT transforms the set (ßl-i, $-1) into the set (ßl, ß2),

but Br is one of the A's, say Br = Ah. The following cases must be

considered :

(a) ßl-i r\ (K - aÄ_0 * 0,    or   ßli H (K - ah^) ^ 0.

This is impossible, for this would imply that ß\C\ß2r7^0 by (2), con-

trary to the assumption that these sets are disjoint.

1 2
(b) ßT-\ C cth-i    or   /3r_i C cth-i,

which is also impossible, as in this case we get that

ßl = Br(ßl^) = al(or al) = Br(ßl_i) = ßl,

contrary by (2) to our assumption that ßli^ßf = 0.

11 12
(Sr—i H «A-i ^ 0,    together with   /3r_i H aA_i ^ 0, or

(c) 2 1 2 2

/3r_i r\ aÄ_i t¿ 0,    together with   /3r_i C\ aÄ_i ¿¿ 0

which is also impossible, as in this case we get by (2) that ßlC\ß2^0.

11 2 2
jSr-i Q cth-i,    together with   /3r_i Ç aA_i, or

(d)
12 2 1

A--1 £ cth-i,    together with   0r_i Ç aA_i,

and the inclusion is proper in at least one part of the conditions, which

is also impossible, since by the conditional monotone property and

by the impossibility of case (b) (applying the same argument to all

pairs in sequence (5)), we get that the number of states in ßg is larger

than that in ßp, contrary to (4).
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1 1                                   2          2
jSr_i = cth-i, together with    /Sr—1 = aA_i, or '

(e)
1 2                                 2          1

(Or—1 = a*-i, together with    /3r_i = aÄ_i.

In this case we get that sequence (5) is a middle part of sequence

(1), which is impossible as all the sets in (1) are different, contrary

to (4).

All possible cases are covered by (a)-(e), and the proof is complete.
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