
GRUSHKO'S THEOREM

ROGER C. LYNDON1

We give a proof of Grushko's Theorem which seems simpler and

more straightforward than any we can find in the literature (see [l],

[2], [4]). The method is a simplification of one we have used else-

where (see [3]); the referee has helped with the simplification.

Let a group G be the free product, without amalgamation, of a

family of its subgroups G$. Each element x of G has a unique repre-

sentation as a normal product of nontrivial factors from the Gj, with

no two adjacent factors from the same Gj. The length | x| of x is the

number of factors in this product. Grushko's Theorem may be stated

as follows.

Theorem. Let G be generated by a finite setX. Assume that, ifx is in

X and g is in the subgroup generated by all the elements of X other than

x, then neither xg nor gx is shorter than x. Then each element of X belongs

to one of the groups Gj.

Our proof rests upon showing that X may be assumed to have a

somewhat stronger property.

If an element x of G has normal form x = ax • • • an, where n = 2k

or n — 2k-\-l, we define the "left half" of x to be L(x)=ai • • • ak.
The "right half" of x is L(x~x)~x. We define a relation x~y to hold be-

tween elements x and y of G if xy = 1 or if x and y belong to a common

group uGjU~x conjugate to one of the Gj.

Let the union of the groups Gj be well ordered. The induced lexico-

graphical order on normal products defines a well ordering x-<y on

G. It is clear that we can define a new well ordering, x <y, on G, with

the following properties:

(1) if |x| <|y| then x<y;

(2) if |x| =|y| and L(x)^.L(y), then x<y;

(3) if \x\ =\y\, L(x)=L(y), and L(xrx)-<L(y-1), then x<y;
(4) all nontrivial elements x of each subgroup uGjU~x (which have

the same length \x\ =2|m| +1 and the same L(x)=L(x~x)=u) occur

consecutively.

A subset XQG is irreducible if:

(0 1<£X;
(ii) x G X implies x^x~x;
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(iii) xEX and gGgp{A—x} implies x^xg, gx.

Let XÇ.G be finite. Then it is clear that an irreducible set X', such

that gp X' =gp X, can be obtained from A by a finite number of steps

consisting of omitting 1 from X, replacing some x by x_1, or replacing

xby xg where gGgpjX—x} and |xg| = |x|. If A satisfies the hypoth-

esis of Grushko's Theorem, the greatest length of an element of X' is

the same as that for X. Therefore, it suffices to show that if X is an

irreducible set of generators for G, then each x in X has length | x | = 1.

Henceforth we assume X irreducible. Let N be the union of all sub-

groups uG/u'1 of G, and, for xEXC\N, let 7V(x) =gp{y: yEX and

y~x}. Define

F = X\JX-1]üU{N(x) - l:allxG XfWJ.

Note that xG F iff either x±xEX or else xEN(x') — 1 for some

x'EXr\N. We shall examine products yi • • ■ yOT such that yi, • • • ,

ymE Y and yi^y2, • • • , ym_io^ym.

Lemma 1. 7/x, yE Y and xn>y, then \x\, |y| g |xy|.

Proof. Assume, by symmetry, that | x| g | y| ; we must show that

|y| ^ | xy|. If x = y, this is immediate. If y±lEX, then x?±y and xm^y

implies that xEgo{X — y±l}, and, from the irreducibility of X, it

follows that y±1^xy, whence |y| ^|xy|. Suppose that |x| =|y|. H

x±lEX the same argument shows that ] x| ^ | xy \, hence | y | ^ | xy |.

If neither x±xEX nor y±1EX, then x, yEN, and |x| =|y| à|xy|

would imply that 7(x) =L(y) and x~y, contrary to hypothesis.

The case remains that | x| < | y| and yEN(y') for some y'EXr\N.

If | xy| < | y|, then more than half of x must cancel into y and, since

|x| < |y|, more than half of x cancels into L(y). Since 7(y) =7(y'),

more than half of x must cancel into the part L(y') of y' in the product

xy', whence |xy'| <|y'|. Since y'EX and xj^-y' with xm^y' implies

xEgl?{X — y'}, this contradicts the irreducibility of X.

Lemma 2. If x, yE Y, with xr^y and \xy\ = | x|, then 7,(y)^L(y-1).

Proof. If xEN(x') for some x'EXC\N, then the hypothesis of the

lemma holds with x replaced by x'. Thus we may assume that x±] GX.

By Lemma 1, |y| á |xy|, whence |y| ^ |x|. From |xy| ^ |x| it fol-

lows that the left half of y must cancel into x and, since |y| ^ |x|,

into the right half of x; thus L(x_1) begins with L(y). From the exact

equality, |xy| = |x|, it follows that the left half of x remains in xy,

hence that L(xy) =L(x) ; and that the right half of y remains in xy,

hence that L((xy)~l) begins with L(y_1). Suppose that L(y_1)~<L(y).

Since L((xy)_1) begins with 7(y_1) and 7(x-1) with L(y), it follows
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that LUxyy^^Lix-1). Since P(xy) = P(x), it follows from (1), (2),

and (3) that xy<x and (xy)-1<x_1. Since x±lEX and y^x, yr^x

implies that yE%p{X—x±x), this contradicts the irreducibility of X.

Lemma 3. If x,y,zE Yand \xy\ — \x\, \yz\ = |z|,iÄe»P(y) =P(y_1),
that is, y EN.

Proof. If x^y or y~z, it follows that y EN. Otherwise \xy\ =\x\

implies Liy)~^Liy~1) by Lemma 2, while, symmetrically, |yz| = |s|

implies P(y~l) =^7,(y).

Lemma 4. If x, y, zEY and \xy\ = \x\, \yz\ = \y\ = ¡z|, |zw|

= | w\, then y~z.

Proof. Lemma 3 applied to x, y, and z gives y EN, and, applied to

y, z, and w, gives zEN. Now y, zEN and |yz| = |y| = |z| implies

that y~z.

Lemma 5. Ifx, y, zEY andx^y,yr^z, then \xyz\ ^|x|—|y|4-|z|.

Proof. Assume that |xyz| <\x\ — \y\ +|z|. Unless y has normal

form either y = uv or y = ubv with \b\ = 1, where u cancels into x and v

into z, there would remain in xyz at least two uncancelled factors from

y, and the inequality could not hold. By Lemmas 1 and 3, u and v

are the left and right halves of y, and y EN, whence v = u~x and

y = M&M_1. Moreover, the inequality requires that x and z have nor-

mal forms x = pau~x and z = ucq where a, c~& and abc= 1.

By Lemma 1, the hypothesis that | xy \ = | x| implies | y ^ | x\. If

|y|=|x|, then xEN is impossible, since |x|=|y|=|xy| and

x, yEN would imply x~y, contrary to hypothesis. If |y| < |x| and

xENix') for some x'EXr\N, the same hypotheses hold with x re-

placed by x'. Thus, in any case, we may suppose x±1EX and, sim-

ilarly, z^EX.
Suppose that |y|<|x|, |z|. Now x = pau~1 and xy = pabu~1

= £c-1M-1, and P(x) =P(xy). From the irreducibility of X, using (1),

(2), and (3), we have P(x-1) = P((*;y)-1). whence ua-^uc and

a~1~^c. Similar comparison of z = ucq with yz = MOcg = Ma_1g gives

c_^a_1. This implies that c = a~1, whence abc= 1 implies that 6 = 1 and

hence y - ubu~x = 1, contrary to y E Y.

If x = z-1, then again c = a~1, a contradiction. If x = z, then x begins

with M = P(y) and ends with m_1; then |x| = |y| would imply x~y,

contrary to hypothesis.

The case remains that x?*z±l, while |y|=|*| or |y|=|z|, say

|y| = |x| á |z|. But now the inequality |xyz| < |x| — |y| +|z| = |z|,

with y, xEgp{X — 2*1}» contradicts the irreducibility of X.
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Lemma 6. If yi, • ■ • , ymE Y and y^yi+i for all i, 1 ̂ i<m, then

m m—1

I yi • ■ • y»l = Z I yi\ - Z (I yi\ + I y<+A - I w+iI )•i i
Proof. The number d,-=|y,-| +|y,+i| — |y<y<+i| is the number of

factors from the normal forms of y,- and y,-+i that cancel in the prod-

uct y,y¿+i, with 1 added if the two innermost remaining factors are

from the same G¡ and so combine to give a single factor in the normal

form for y¿y,-+i. The lemma asserts that the normal form for yi ■ • • ym

can be obtained from those for the y,- by first cancelling between

adjacent y,- and yt+i, and then counting as a single factor the product

of every maximal consecutive sequence of the remaining factors that

lie in the same Gj.

In view of Lemmas 1 and 3, some factor from each y,- must remain

after cancellation. Any consecutive sequence of factors in the same Gj

must then arise from consecutive y¿, and we have to show that no

product of such a sequence is 1. This follows from the assumptions

for a sequence of one or two such factors. If three consecutive factors

a, b, and c, all in the same Gj, arise from y¿, yt+i, yi+2, then Lemma 5

ensures that abcj^l. Finally, as many as four such factors, a, b, c,

and d, from y,-, y,-+i, y<+2 and yi+3 is impossible, since then the hypoth-

eses of Lemma 4 would be satisfied, and we should have y,+i~y,+2,

contrary to assumption.

Lemma 7. If yu • • ■ , ymE Y and y,ooy1+1 for all i, 1 ̂ i<m, then

for each h, l^h^m,

\yh\ è \yi- ■ ■ ym\.

Proof. Regroup the equation of Lemma 6 in the form | yx • • • ym|

- Sî"1 (\y<\ -di) + \yn\ + Yiï+i (13-1 -di-i), and observe that, by
Lemma 1, each |y¿| —¿,^0 and each |y,| — d,-_i^0.

Lemma 8. If X is irreducible and g Ggp X, then g is in the group

generated by those xEX for which \x\ ^ | g\.

Proof. By hypothesis, g = zi • • • zn for some ZiEX\JX~x, hence

z¿G Y. By successively combining adjacent factors z<~z,-+i and delet-

ing factors 1, we obtain g = yi • • • ym for yu • • • , ymE Y and no

y>~y;+i- By Lemma 7, each |y¿| á |g|, while clearly each y,- is con-

tained in the group generated by those x in X with | x| = | y¿|, hence

with | x| á | g|. It follows that g = yx ■•■ ym is in this group.

Lemma 9. If X is irreducible and generates G, then | x | = 1 for all

xEX.
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Proof. Let Xi be the set of all x in X for which | x| =1. Since each

GjQG = gp X, we conclude by Lemma 8 that each GjQgoXi, and

hence that G = gp X\. It follows from the irreducibility of X that

X = Xi.
This completes the proof of Grushko's Theorem.
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GENERALIZED FUNCTIONS OF SYMMETRIC MATRICES

MARVIN MARCUS1 AND MORRIS NEWMAN

1. Introduction. In an abstract published in 1961 [4] we announced

the following result:

Let A be an n-square positive semi-definite matrix and assume that

A^S where S is doubly stochastic. Then

(1.1) per (^4) ^ w !/»**.

The notation ^4^5 means an^si}, i,j=>l, •••,». A doubly sto-

chastic (d.s.) matrix has non-negative entries and every row and

column sum is 1. The permanent, per (A), is the function defined by

n

(1.2) per 04) =  E   IT «fa«

where the summation extends over the whole symmetric group of

degree n, Sn.

In 1962 [3] we also proved that:

If S is an n-square positive semi-definite symmetric matrix which is

doubly stochastic in the extended sense then

(1.3) per (S) ^ n\/n".
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