GRUSHKO’S THEOREM
ROGER C. LYNDON!

We give a proof of Grushko’s Theorem which seems simpler and
more straightforward than any we can find in the literature (see [1],
[2], [4]). The method is a simplification of one we have used else-
where (see [3]); the referee has helped with the simplification.

Let a group G be the free product, without amalgamation, of a
family of its subgroups G;. Each element x of G has a unique repre-
sentation as a normal product of nontrivial factors from the G;, with
no two adjacent factors from the same G;. The length |x| of x is the
number of factors in this product. Grushko’s Theorem may be stated
as follows.

THEOREM. Let G be generated by a finite set X. Assume that, if x is in
X and g is in the subgroup generated by all the elements of X other than
x, then neither xg nor gx is shorter than x. Then each element of X belongs
to one of the groups G;.

Our proof rests upon showing that X may be assumed to have a
somewhat stronger property.

If an element x of G has normal form x=a, : : - a,, where n=2k
or n=2k+1, we define the “left half” of x to be L(x)=a; - - - a.
The “right half” of x is L(x~!)~1. We define a relation x~y to hold be-
tween elements x and y of G if xy =1 or if x and y belong to a common
group #Gu~! conjugate to one of the G;.

Let the union of the groups G; be well ordered. The induced lexico-
graphical order on normal products defines a well ordering x<y on
G. It is clear that we can define a new well ordering, x <y, on G, with
the following properties:

(1) of |=| <|[ them x<y;

(2) if |x| =|y| and L(x)<L(y), then x<y;

(3) if |x| =|9|, L(x) =L(y), and L(x")<L(y™"), then x<y;

(4) all nontrivial elements x of each subgroup uGu=' (which have
the same length lxl =2[u| +1 and the same L(x)=L(x~Y)=u) occur
consecutively.

A subset X CG is irreducible if:

() 1€X;

(ii) xE€X implies xZx~1;
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(iii) *EX and g€gp{X —x} implies x <xg, gx.

Let X G be finite. Then it is clear that an irreducible set X', such
that gp X’ =gp X, can be obtained from X by a finite number of steps
consisting of omitting 1 from X, replacing some x by x~!, or replacing °
x by xg where gCgp{ X —x} and | xg| <|x|. If X satisfies the hypoth-
esis of Grushko’s Theorem, the greatest length of an element of X’ is
the same as that for X. Therefore, it suffices to show that if X is an
irreducible set of generators for G, then each x in X has length |x| =1.

Henceforth we assume X irreducible. Let N be the union of all sub-
groups #Gu~! of G, and, for x€XNN, let N(x)=gp{y: yEX and
y~ax}. Define

Y = XUX-TUU{N(x) — 1:all € XNN}.

Note that x€Y iff either x*'€X or else xEN(x')—1 for some
x’€XNN. We shall examine products ¥, - - - ¥, such that y;, - - -,
y,,,e Y and V1Y2, ¢ 0y Ym—1%Ym.

LemMa 1. If x, y© ¥ and x*y, then | x|, |y| <|xy].

PRroOF. Assume, by symmetry, that |x| = | y] ; we must show that
Iyl = |xy| . If x=1, this is immediate. If y*'€ X, then x5£y and x~y
implies that xEgp{X —y*!}, and, from the irreducibility of X, it
follows that y*!<xy, whence |y| <|xy|. Suppose that le = |y| I
x*1€ X the same argument shows that |x| <|xy|, hence |y| <|xy]|.
If neither x*'€ X nor y*'€ X, then x, yEN, and lx| =|y| glxy[
would imply that L(x) =L(y) and x~y, contrary to hypothesis.

The case remains that |x| <|y| and yEN(y’') for some yy EXNN.
If |xy| <|9|, then more than half of x must cancel into y and, since

xl <|y| , more than half of x cancels into L(y). Since L(y) =L(vy"),
more than half of x must cancel into the part L(y’) of ' in the product
xy', whence |xy'| <|y’ | . Since y'€X and x#y’ with x~~y' implies
xEgp{X—y'}, this contradicts the irreducibility of X.

LeEmMA 2. If x, yE Y, with x~y and ]xy| = | xl , then L(y)=XL(y™Y).

Proor. If x&€ N(x’) for some x’ € XM N, then the hypothesis of the
lemma holds with x replaced by x’. Thus we may assume that x¥'€ X.
By Lemma 1, |y| £|xy|, whence |y| <|x|. From |xy| <|#| it fol-
lows that the left half of y must cancel into x and, since |y| <|x|,
into the right half of x; thus L(x~") begins with L(y). From the exact
equality, Ixyl = |x| , it follows that the left half of x remains in xy,
hence that L(xy) =L(x); and that the right half of ¥ remains in xy,
hence that L((xy)~1) begins with L(y~!). Suppose that L(y~')<L(y).
Since L((xy)~!) begins with L(y~!) and L(x~!) with L(y), it follows
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that L((xy)~Y)<L(x~Y). Since L(xy)=L(x), it follows from (1), (2),
and (3) that xy<x and (xy)~!<x~!. Since x*'€X and y#x, y~x
implies that y&gp {X —xt! } , this contradicts the irreducibility of X.

LemMA 3. Ifx,y,2€ Yand | xy| = | x|, | y2| =|3|,then L(y) = L(yY),
that is, yEN.

PRrOOF. If x~y or y~sz, it follows that y& N. Otherwise |xy| = | x|
implies L(y)XL(y™!) by Lemma 2, while, symmetrically, lyz] = | zl
implies L(y~)ZL(y).

LEMMA 4. If %, v, 2€Y and |xy| =|x|, |y2| =|y]| =]2|, |sw]
=|w]|, then y~sz.

Proor. Lemma 3 applied to x, ¥, and 2 gives y&E N, and, applied to
y, 2, and w, gives zEN. Now 3, 2EN and |yz| =|y| =|2| implies
that y~az.

LEMMA S. If x, v, 2E Y and x~y, y~z, then |xyz| g|x| —|y| +|z|.

PRrOOF. Assume that |xyz| <|x| —|y| +]|2|. Unless y has normal
form either y =uv or y=uby with |b| =1, where « cancels into x and »
into 2, there would remain in xyz at least two uncancelled factors from
v, and the inequality could not hold. By Lemmas 1 and 3, % and v
are the left and right halves of y, and yE N, whence vy=u"1 and
y=ubu~1. Moreover, the inequality requires that x and 2z have nor-
mal forms x =pau~! and z=wucqg where a, c~b and abc=1.

By Lemma 1, the hypothesis that |xy| =|x| implies | y| <|x]|. If
]yl = |x| , then x€N is impossible, since |x| =|y| =|xy| and
x, y& N would imply x~vy, contrary to hypothesis. If | yl < x| and
xEN(x') for some x¥’ € X NN, the same hypotheses hold with x re-
placed by «’. Thus, in any case, we may suppose x*'€ X and, sim-
ilarly, zt1€X.

Suppose that |y| <|x|, |z|. Now x=pau~! and xy=pabu=t
=pc~'u?, and L(x) = L(xy). From the irreducibility of X, using (1),
(2), and (3), we have L(x~)ZL((xy)~!), whence ua—'Suc and
a—'=Xc. Similar comparison of z=ucqg with yz=ubcg=ua"'q gives
¢=a~'. This implies that c=a"!, whence abc=1 implies that b=1 and
hence y=ubu—'=1, contrary to y& Y.

If x=2"1, then again c=a"!, a contradiction. If x =z, then x begins
with % =L(y) and ends with «~1; then |x| =|y| would imply x~y,
contrary to hypothesis.

The case remains that x>z*!, while |y| =|x| or |y| =|
ly| =]=| = |z|. But now the inequality |xyz| <|x| —|v] +]2
with y, xEgp{ X —z*!}, contradicts the irreducibility of X.

z|,say
| =12,
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LEMMA 6. If y1, + + -, YmE Y and v,y for all 1, 1Si<m, then
m m—1
91+ ym| = ; | y:| - ;(lyil‘l' | yerr| = | yovira|).

ProoF. The number d;=|y:| +|y:1| —|y:yin1| is the number of
factors from the normal forms of y; and y,41 that cancel in the prod-
uct ¥;¥;41, with 1 added if the two innermost remaining factors are
from the same G; and so combine to give a single factor in the normal
form for y;y41. The lemma asserts that the normal form for y; « - - y,
can be obtained from those for the y; by first cancelling between
adjacent y; and y;;1, and then counting as a single factor the product
of every maximal consecutive sequence of the remaining factors that
lie in the same G;.

In view of Lemmas 1 and 3, some factor from each y; must remain
after cancellation. Any consecutive sequence of factors in the same G;
must then arise from consecutive ¥;, and we have to show that no
product of such a sequence is 1. This follows from the assumptions
for a sequence of one or two such factors. If three consecutive factors
a, b, and ¢, all in the same Gj, arise from y,, ¥:;1, ¥i1e, then Lemma 5
ensures that abc#1. Finally, as many as four such factors, a, b, ¢,
and d, from y;, .41, ¥i42 and y,5 is impossible, since then the hypoth-
eses of Lemma 4 would be satisfied, and we should have y;1~9y;,s,
contrary to assumption.

LEMMA 7. If w1, « + -, ¥ymE Y and y;~~y: for all 1, 1 1< m, then
for each by, 1 Sh<m,

on] = |31 9ml.

PRroOF. Regroup the equation of Lemma 6 in the form [y; C e Yl
=y (|y.~| '—di)‘l‘lyhl +>m ([y,-| —d;_1), and observe that, by
Lemma 1, each |y:| —d:20 and each |y,| —d;-1=0.

LeMMmA 8. If X is drreducible and gEgp X, then g is in the group
generated by those x€ X for which |x| <|g|.

Proor. By hypothesis, g=2; - + - 2, for some 2,EX\UX-1, hence
2,& Y. By successively combining adjacent factors 2,~2;,1 and delet-
ing factors 1, we obtain g=y, + - - y,, for ¥, - - -, y,E€ Y and no
yi~¥;11. By Lemma 7, each ]y; =< l g| , while clearly each y; is con-
tained in the group generated by those x in X with |x| =|y.|, hence
with |x| §[g| . It follows that g=y « - - y. is in this group.

LEMMA 9. If X is drreducible and generates G, then |x| =1 for all
z€X.
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PROOF. Let X; be the set of all x in X for which |«| =1. Since each
G;CG=gp X, we conclude by Lemma 8 that each G;Cgp X, and
hence that G=gp Xi. It follows from the irreducibility of X that
X=X,

This completes the proof of Grushko’s Theorem.
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GENERALIZED FUNCTIONS OF SYMMETRIC MATRICES
MARVIN MARCUS! AND MORRIS NEWMAN

1. Introduction. In an abstract published in 1961 [4] we announced
the following result:

Let A be an n-square positive semi-definite matrix and assume that
A =S where S is doubly stochastic. Then

(1.1) per (4) = nl/nn

The notation 4 =S means a;;=5s;;, 4, j=1, - + -, n. A doubly sto-
chastic (d.s.) matrix has non-negative entries and every row and
column sum is 1. The permanent, per (4), is the function defined by

(1.2) per (4) = > I awes
0ES, =1
where the summation extends over the whole symmetric group of
degree #, S,.
In 1962 [3] we also proved that:
If S is an n-square positive semi-definite symmetric matrix which is
doubly stochastic in the extended sense then

1.3) per (S) = nl/nn.
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