CORRECTION AND SUPPLEMENT TO THE PAPER THE DIRECT PRODUCT OF RIGHT SINGULAR SEMIGROUPS AND CERTAIN GROUPOIDS¹

T. TAMURA, R. B. MERKEL AND J. F. LATIMER

First we would like to correct a few places in the paper as follows: p. 122, 2nd line from the bottom (condition P5.5), next to "two-sided identity," add

"
$$e_{\alpha}$$
 and $e_{\alpha}e_{\beta} = e_{\beta}$."

p. 123, 1st line,

delete "P5.3".

p. 123, 2nd line from the bottom (the proof of Theorem 6)

"P5.3" is replaced by "P5.5".

To make sure, we shall restate the changed part:

P5.5. There is a decomposition $\{S_{\alpha}\}$ of S such that each S_{α} is a groupoid with a two-sided identity e_{α} and $e_{\alpha}e_{\beta}=e_{\beta}$.

VIII₂'. {P5.1, P5.2, P5.5}.

Theorem 6 can be restated as follows:

THEOREM 6. A groupoid S is an M-groupoid if and only if S is a right zero band of groupoids S_{α} with identity e_{α} , $S = \bigcup_{\alpha \in \mathbb{R}} S_{\alpha}$, $S_{\alpha}S_{\beta} \subset S_{\beta}$ such that $e_{\alpha}e_{\beta} = e_{\beta}$.

In other words:

Let S be a right zero band of groupoids S_{α} with an identity e_{α} . Then S is the direct product of a right zero band and a groupoid with an identity if and only if

$$e_{\alpha}e_{\beta}=e_{\beta}.$$

Let VIII's denote the original VIII's, that is,

VIII3'. {P5.1, P5.2, P5.3 with the original P5.5}.

VIII₃ is a sufficient condition for S to be an M-groupoid, but not a necessary condition.

We thank Professor Reikichi Yoshida for his remark.

Received by the editors March 22, 1965.

¹ Proc. Amer. Math. Soc. 14 (1963), 118-123.