SOME CLASSES OF REGULAR UNIVALENT FUNCTIONS
R. J. LIBERA

1. Introduction. Let 8§ denote the family of functions f which are
regular and univalent in the unit disk |z| <1, hereafter called A, and
which satisfy the conditions f(0) =0 and f'(0) =1, and let $*, X and
@ be the subfamilies of § whose members map A onto domains which
are starlike with respect to the origin, convex, and close-to-convex,
respectively. Then, as was shown by W. Kaplan [2],

(1.1) xCs*CecCs.

Recently, in a seminar given at Rutgers University, Professor M. S.
Robertson showed that the starlike function %k, where k(z) =2(1 —2)72,
has the property that 25-1fZk(t) dt, 3EA, defines a function in $*. The
extremal character of the Koebe function, k, within the class $*,
suggests the following generalization.

THEOREM 1. If s is in $*, then the function S, defined by S(z)
=(2/2) [5s(t) dt, is likewise in S*.

It is the purpose of this note to establish Theorem 1 and to con-
sider similar conclusions for other members of 8.

2. Preliminary results. The class of all regular functions P which
satisfy the conditions P(0) =1 and Re {P(z)} >0, for zin A, is repre-
sented by @.

LeEmMMA 1. If N and D are regular in A, N(0) =D(0) =0, D maps A
onto a many-sheeted region which is starlike with respect to the origin,

and N'/D'E®, then N/DE®.

REMARK. The essential ideas in the proof of Lemma 1 are the same
as given by Sakaguchi in the case D is univalent [6]. R. M. Robinson
[5, Lemma, p. 30] has used a similar technique.

Proor. By known properties of class @, [4], we can write

N’

_(z)_ — a(r)

D'(2)

Choose 4 (z) so that
D'(2)A@E) = N'(z) — a(r)D'(z) and | A(z)l < a(r),

<aln), |z <r, O0<r<1
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for lz[ <r. Fix 2y, 20€A, and let L be the segment joining 0 to D(z,)
which lies in one sheet of the starlike image of A by the mapping D.

Let L~ be the pre-image of L under D and let r=max |z| , where
g& L1 Then

|69 = s 0| = | [ "0 - D0l 4

frl D'(1)A() dt‘ < afr) fz,l aD() |

= a(r)| D(a) | -

This proves the lemma.

LEMMA 2. If sE8*, then a(z) = [3s(t) dt, 2EA, gives a function which
is 2-valently starlike with respect to the origin for all z in A.

ProoF. Let D(2) =2¢'(z) =25(z) and N(z) =0 (2), then D is (2-val-
ently) starlike with respect to the origin since

Re{zID)’((z;)} - Re{1+ z:(':)z)} >1>0 for zinA.

Furthermore,

Re { V')

D'(z)} >0, 2E A,

because

D'(2) zs'(2)
Re{ } = Re {1 + > 0.
N'(2) s(z)
An application of Lemma 1 [which is valid even though N’(0)/D’(0)
#1] yields

N(2) 20’ (2) .

Re {— >0, or Re{ >0, for zinA;
D(3) a(z

and this together with

2 reo’ (re) _ 20’ (2) _
L RC{W} dO—Zw{a(z) }‘_0—4’”‘, 0<f<1,

which follows from the mean-value theorem for harmonic functions,
shows that ¢ is 2-valent and starlike [1, p. 212]. One can show, fur-
thermore, that ¢ is convex [1] throughout the unit disk.
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3. Theorems and proofs.
ProoF oF THEOREM 1. For the function S, defined in Theorem 1,
we have

() . 2s5(z) — j; s(t) dt ) 2'(@) — o(2)
S(z) f i a(3)
s(2) dt

and then differentiation of the numerator and the denominator of the
last expression gives

[20'(z) — o)V B 20"(z)  25'(3) .
o' (2) dG) s@)

An application of Lemma 1 and Lemma 2 completes the proof.
As an immediate consequence of Theorem 1 and the fact that

3.1 fE X ifandonlyif 2zf’ € 8%
we have the following corollary.

COROLLARY 1.1. If sE8*, then [5(2/) [[ss(x)dx] dt defines a member
of X.

THEOREM 2. If cE X and C(2) = (2/2) [ic(t) dt, then CE X.

ProOF. Let 5(z) =2¢'(2); then [by (3.1)] s&8*. Let S be defined as
in Theorem 1, then

S(z) = -i— j; ‘tc' ) dt = %[zc(z) — j; 'c(t):dt]

_ z[zc(z) - ;2 fo "e) dt] = 2C'(2).

4

Since S is starlike, it follows from (3.1) that C is convex. Theorem 2
can be proved directly from Lemma 1 by the method of Theorem 1.

CoroLLARY 2.1. If ¢c€%R, C(3)=(2/3)[ic(t) dt and h(z)=2c(z)
—C(2), then hES*.

fisin €if, and only if, there exists a function g such that g(z) = es(z),
sEs*, || =1, and

#f'(2) .
Re{ @ } >0, for z in A.
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In this case, we say f is close-to-convex with respect to the (starlike)
function g.

THEOREM 3. If f is close-to-convex with respect to g,

2 z 2 z
F(z) = ;j; f@) dt and G(z) = —z—j; g(t) dt,

then F 1is close-to-convex with respect to G.

The proof is similar to that of Theorem 1.
In [3], J. Krzyz showed that the radius of close-to-convexity of
every function in § is greater than or equal to 7, .80 <7 <.81.

THEOREM 4. If fESand F(z) =(2/2)[; f(t) dt, then F is schlicht (and
close-to-convex) for |z| <r, r=7,.
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