
A CLASS OF RIEMANN SURFACES1

THOMAS A. ATCHISON

In this paper, a class of open simply connected Riemann surfaces

is considered and the uniformizing function and its derivative are ex-

hibited in an infinite product representation. An infinite product of

the form of the uniformizing function is then shown to produce a

surface of this class.

Definition of the class of surfaces. Let {an}ñ~i, {í>8n-s}"_i, and

{&3n-i}n-i be three sequences of real numbers such that for every

positive integer «, a„>0, ¿3„_2>0, and ô3n_i>0; 0<a3n_2<è3„_2; and

0<a3n_i<&3n_i. For each sheet, a copy of the Riemann sphere, let a

surface P consist of sheets Si, 52, • • ■ , over the Riemann sphere such

that

(1) Si is slit from ai to bi,

(2) for « odd, 53„_i is slit from — bin-i to — a3„_i and from a3n_2 to

b%n-i\ for « even, 53n_i is slit from — i>3„_2 to —a3„_2 and from a3n_i to

Oln-l,

(3) for « odd, S3n is slit from —&3„_i to — a3n_i and from c3n to

+ co ; for « even, 53n is slit from — co to — a3n and from o3„_i to &3n_i,

and

(4) for « odd, 53n+i is slit from — b3n+i to —a3n+i and from a3„ to

+ 00 ; for « even, San+i is slit from — oo to — a3n and from a3n+i to

btn+l.

S„ is joined to Sn+i by connecting the slits which have one endpoint

at +a„ to form first-order branch points at the endpoints of the slits.

The uniformizing function. P is simply connected and open, hence

by the General Uniformization Theorem, there exists a unique func-

tion <¡> such that <p maps P one-one and conformally onto {z| | z\ <R

<: oo }, where for w=/(z) =<j>~1iz), /(0) =0G5i, and /'(0) = 1.

Let ai denote the zeros of /'(z) corresponding to the first order

branch points over ( —l)i+1a„ while —ßzi-z and —/33î-_i denote the

zeros of /'(z) corresponding to the first-order branch points over

(-l)i+1Z>3i_2 and (—lybu-i, respectively. Let /(S¿)=0G5j for

i = 2, 3, • ■ • , let fiyu) = oo, a first-order branch point over co on

Sa and 53i+1, let/(7i) = œ G Si, and let/(Y3i_i) = co ESa-i.
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Lemma 1. / is real for real z, and for k^l,

0 < a* < 6k+i < ak+i

and

0 > —71 > —ßzk-2 > —y¡k-i > —ßzk-i > —y»k > —ßtk+i-

Proof. The argument is essentially the same as that of [3, pp. 511-

512],

Lemma 2. For each positive integer n, let P„ be the first 3w+3 sheets

of F with the slit from ( — l)na3n+3 to ( — l)n 00 deleted. Then there exists a

rational function which maps the z-plane onto F„.

Proof. P„ is a simply connected closed surface with branch points

over ai, —a2, ■ ■ ■ , ( — l)n+1a3n+2, ¿»1, —b2, • • • , (-l)n+1&3„+2 and

with » branch points over co. Fn has 3«+ 3 points over the origin and

M + 3 points over co which are not branch points. Then P„ is the Rie-

mann surface of the inverse of a unique rational function, w — Rniz),

such that Pn(0) =0G5i, P„' (0) = 1, and Pn( 00) = co ES3n+3. If P„(5*,„)

= 0G& for 2 = ¿ = 3« + 3; P„(-7i,™) = °° ESU Rn(-yu-i,n) = °°
ESsk-i, Rni—yzk,n)=<^ESzk, R„i—y3n+2,n) = <*> ES3n+2 for l^k^n;

Rliak,n)=0 for lgjfeá3»+2; P„'(-/33*_2l«) =0 for l£k£n+l", and
Rli-ßzk-i,n)=0 for l^k^n+l, then

Z        "      (53J:-l,n)(Ô3*,n)(53i+l,n)      (S3n+S,n) (Ô3n+8,n)
Rniz)=— n

and

8n+2 n+1 n+1

II    («¿.») IT (ft*-2,n) IT (/£*-!,„)
*.'(«)   = *-l fc-1

(TÎ.J2 n+1 n

II (T3*-l,n)2 ikts*.»)8
*~1 *=1

where ô*„ = 1 - */5/,„ 7*a = 1 +z/yi¡n, a*„ = 1 - z/a¡,n and /3*„ = 1

+*/ßi,n.

Lemma 3. P is parabolic.

Proof. Let Dn be the z-plane slit along the real axis from a3n+2,„ to.

+ 00. Then P„ is mapped by w = P„(z) onto P„ with the sheet 53„+3

slit from (-l)"+1ß3„+2 to (-l)na> along the real axis. But f=0(w)

maps this cut surface one-to-one on the domain An of the f-plane

bounded by the curve C3n+3 and the segment (a3n+2, a3n+3) and con-
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taining f = 0. Thus Ç=<p[Rn(z) ] =$n(z) provides a schlicht map of Dn

onto A„ with ^„(0)=0 and ^„'(0) =1. As in the argument of [6, p. 55],

the distance from f = 0 to the curve d„+s is greater than a3n+2,».

For 0<2 <ai,n,

i n &*-*..      n+1 # „

<  1, II 73*-l.n >   1, II (T3t,n)2 >   1,
„* n

n*=i
Tl,»   TT    * *_1 *_1

and

3n+2
*

Thus, if

II  «*,» > 0.*-i

1 1 8n+2        1

E
«3»+2      3n-\- 2 i=i   <**,„

then

>

3n+2
*

o<i?„'(Z) <, n «*.. =
*=i

Hence,

r   i    3:¿2  * ~i3n+2

.3w + 2 i_i
«A. = (1 - z/aZn+2y»+2.

/•«l.» /• al.n

«i=     I R:(z)dz<    I (1 - 2/«3n+2)3n+2¿Z
■'o «^ o

(l-Z/a3»+2)3»+2¿Z = -^_-

o 3» + 3

But

*£*    1       3«+ 2      1

£  — =-<-
k—l     <Xk,n OCZn+2 01

thus for 1^î<3w + 2,

i 3n+2        1 !— < E —< —
di,n        k-l    ctk,n       a\

or iai<ai¡n for lgi'g3w+2, w = l, 2, • • • . Therefore, the distance

from the origin to C3n+3 is greater than (3« + 2)ai for all n, and F is

parabolic.



734 T. A. ATCHISON [August

Lemma 4. Rn(z)—rf(z) uniformly on compact subsets of the plane as

n—»co.

Lemma 5. For all k^l, a*,»—>ak, fts-ü,»—>ß3*-2, /33*-i,n—^jSaJt-i,

734-1,»—»78*-i, 73*,»—»73*, and S*,«—>5* as «—><».

Proof. These lemmas are proved in essentially the same way as

similar results are obtained in [3].

Lemma 6. lim sup,-..«, £{=i l/á*,»< °° and £í°=i l/d*< °° for the

following cases: dk,n=ak,n with j = 3n + 2; dk,n = ßzk-2<n with j = » + l;

á*,»=|33*-i,» withj = n+l; d*,„=73*-i.» with j = n+l; dk,n=yzk,n with

j = n; dk = ak; dk = ßzk-2;dk = /33*_i;d* = 73*-i; and dk = yzk. Also

lim sup„,w E^3 1/5*,»< co and £*"=2 1/5*< co.

Proof. If Cn denotes the coefficient of z in the Taylor expansion of

log Rn (z) about the origin, then C„—*K< co as «—»oo and thus, be-

cause 0<7i,„<p\,„, 0<73*-i,„<|83*_i,„, and 0<73*,»</33*+i,n,

Zn-\ 2 n+1 n+1

- co < Ç, < - E  1/«*.» - E 1/0U-1.» - 1/ft.» - E 2//33*-2,n < 0.
*=1 *-l *=2

Consequently, the first three cases are established. The remaining

cases follow from the inequalities

0 < /33*-2,n  < 73*-l,n>      0  < ßik-l.n  < 7S*,n,

and

0 < a*,„ < 5*+i,„.

Lemma 7. If

CO CO 00

n «* n /33*-2 n /S3*-ii *=i  *=i    *-i

(T*)2  n (7L-1)2 n (tI*)8/b*-i)2 n -
*-i      *-i

thenf'(z) =exp(5'z)w(z) where 5' = lim sñ with sú the coefficient of z in

the Taylor expansion of log Rá (z)/rr(z) about the origin.

Proof. Using the ordering of a, ß, and y and Lemmas 4 and 5,

log R„ (z)/ir(z)—>5'z as n—» co.

Lemma 8. 5' = 0.

Proof. The inequality 5' á 0 may be demonstrated using methods

similar to those of [2]. Because the factors of ir(z) are canonical prod-
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ucts of genus zero, then for every e>0 and for 0<p = |arg z\ ^tt—p,

ir(z) =0(etM) and l/ir(z) =0(e'|z|)- Thus under the same conditions,

for R sufficiently large and |z|>P, exp(ô' Re(z)-e|z|) g |/'(z)|

gexp(ô' Re(z)+e|z|). For5'<0and |zj >P, there exists </> > 0 such

that for -57r/6áarg z=-2ir/3, |/'(z)[ ^exp(<?>|z|) and for -tt/3

áarg«á-x/6,exp(-^|«|)e|/(*)|.
Since the distance from the origin to Cn+i—► °° as n—» «, then there

exists {rn}™=1 such that r„—>oo as «—>» and for every z on Cn+i,

|z| sir». Let zi,2j and z2,2y be two points on C2¡ such that arg zil2j-

= — 57t/6 and arg z2,2j= —2w/3. As z traverses C2¡ from Zi,2y to z2,2j-,

/ is real and increasing and hence f'(z)dz — 0. If S' <0, then for fi and

f2in {r|-7T/3áargra-7r/6, |f|>P},

Im) - f(SÙ I = I   f Uf'(t)dt\=   C\ f'(t) \\dl\

g exp(-<6i?) | f2 - fi| -

Thereforef(z)-+K, a constant, uniformly in {z| —tt/3 áarg zg —w/6,

\z\ >R] as z—x». As z—>oo along the ray arg z= —7r/4,/(z) <0 when

the ray crosses C2„ and /(z) > 0 when the ray crosses C2n+i. Hence

K = 0, and for/ sufficiently large, 0>/(zi,2¿) >f(zi,2j)> — 1, where

arg Z4,2;= — 7t/4 and Z4,2, is on C2¡. For r2j sufficiently large,

f'(t) dt = expfa r2j)ir/6 r2i.
-1,2)

Thus as j—* oo, f(z2,2j) — /(zi,2y)—► °°. But f(z2,2j) — 0, and hence f(zi,2])

—►— », which contradicts 0>/(zi,2,)> —1 for/ sufficiently large.

Lemma 9. If

p(*) = -=
Z *_2

k—1 Jfc-1
IKt3*-i)II(73*)2

then /(z) =exp(5z)P(z), where 5 ts rea/ owd 8 = lim„_Ms„ wîîâ 5„ the

coefficient of z in the Taylor expansion of log Rn(z)/P(z) about the

origin.

Proof. Log [Rn(z)/P(z)]—>5z uniformly on any compact subset of

the plane as n—> oo.

Lemma 10. S = 0.
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Proof. Using Lemma 4, as n—* co,

[August

0 g lim sup I s„ — si | ^ lim sup
n+1

Z^   l/y3*-l,n   —   Z-(   ̂ /ßsk-2,n
*=m

+   lim sup
n—♦»

+   lim sup
n—»oo

4-   lim sup
n—»oo

+  lim sup
n—»oo

+   lim sup

¿ (1/7U-1 - l/A*-ï)

n+1

23   l/73*,n   —   X  l/03*-l,n

00

£ (l/TtJ, - l//33*_i)
fc=m

3n+3 3n+2

23    l/5*,n  —   53     l/«*.n

¿ (1/5, -  l/«i)
fc=m

g   lim SUp  l/73m-l,n

+  l/73»-l +   Hm SUp  l//ff¡|m-l,n +   l/03m-l +  lim SUp   l/ám,„
TI—► « fl—>«

+ I/o« = 2/y3m_! + 2//33m_i + 2/SOT,    for every m = 2.

Therefore, S = 5' = 0.

Collecting the above results, we have the following theorem.

Theorem. A surface of the above class is parabolic and the mapping

function is given by /(z) =Piz) where/'(z) =7r(z). Also 53iT=2 l/¿* cow-

verges for dk=ak, dk=ß3k-2, dk=ß3k-i, d*=73*_i, dk=y3k, and dk = 8k.

The remainder of the paper proves the following theorem.

Theorem. Let

z   -    («Li)(«a)(«a+i)
/(z) = — II  -■-<

7?Íl       (73Vi)(7*)2

wfeere 53*°-2 1/8* and 53*°-1 Vy* converge, and for every integer k,

0<8*+i<8*+2 a«d 0<7i<73*_i<73*<73*+2. PÄe Riemann surface of

the inverse offiz) is of the class described above.

Lemma 11. There exists a sequence of rational functions Rniz) such

that R„iz)-^fiz) uniformly on compact subsets of the plane and such that

the paths other than the real axis on which Rniz) is real are 3n simple,

closed, nonintersecting curves each symmetric with respect to the real axis.
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Proof. Consider

*»(*) =-nz    »    (í»-i)(í»)(8tt+i)

•yfw    (^_i)(t3*)2

Using Rolle's theorem, at least 3n zeros of Rñ (z) are determined

such that 0<ai,»<52<o!2,n< • • • <a3n,„<53n+i, at least 2» zeros of

R„ (z) are determined such that 0> — 71 > — ßi,n> — 72 > — &.„> • • •

> — ß2n+i,„> —yzn, and Rn(z) has n first-order branch points over the

poles at —73*- The indicated critical points of Rn(z) account for the

total branch order, 6n, of the rational function.

Through each value of ak,n, ßk,n, and 73*,„ passes a curve in addition

to the real axis on which Rn(z) is real. Since Rn(z) = [/^„(z)]-, where

]~ means complex conjugate, these curves are symmetric about the

real axis, and because 00 is not a critical point, the curves are simple,

closed, nonintersecting ones each of which intersects the real axis at

two points. A consideration of the order of a*,„, ßk,n, and 734,„ will

show that the 3n curves, C*,„, on which Rn(z) is real intersect the

real axis at a*,„ and — j3*,„ or «3*,» and —73*,».

Lemma 12. Any ray from the origin intersects each curve C*,» exactly

once.

Proof. Rn(z) =Pn(z)/Qn(z) where deg Pn(z) = 3ra+l and deg Q„(z)

= 3« + l. The condition that z is a point on C*,„ or the real axis is that

2iS[Rn(z)]   = Rn(z)   -   [Rn(z)]~ =  Pn(z)/Qn(z)  ~ Pn(z)/Qn(z)  =  0.

Hence on Ck,n, F(x, y) =Pn(z)Qn(z)-Pn(z)Qn(z)=0. F(x, y) is of de-

gree at most 6w+ 1 in x and y simultaneously. Any line y = jnx or

x = my intersects each C*,„ at least twice, and these 6n intersections

together with one at the origin make a total of 6n+l intersections,

the maximum number of solutions of F(x, mx) =0 and F(my, y) =0.

Lemma 13. The points of C*,„ tend to the points of a curve C* as n—» oo

where Ck intersects the real axis at ak and —ßk or —yk. Any ray from

the origin intersects Ck exactly once, Ck is symmetric about the real axis,

and Ck does not pass through z = co.

Proof. This lemma is demonstrated in a manner similar to the

demonstration of Lemma 14 of [2].

Lemma 14. f(z) is a schlicht and conformai map of the upper half of

the annular region between C, and C,-+i onto 3{ (—l):'w} >0.

Proof. This follows using Darboux's theorem.
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THE ADJOINT OF A DIFFERENTIAL OPERATOR
WITH INTEGRAL BOUNDARY CONDITIONS

ALLAN M. KRALL

In [l] a second-order differential operator was defined on those

functions in P2(0, co) satisfying an integral-point type of boundary

condition. An analysis of its spectrum and two "eigenfunction" ex-

pansions follows. Left unanswered was the problem of finding the

adjoint operator and explaining where the nonhomogeneous expan-

sion came from. We now derive the adjoint operator, classify its

spectrum and show that the nonhomogeneous expansion is, in fact,

the eigenfunction expansion associated with the adjoint operator. It

is interesting to see that the adjoint operator is a combination of a

differential operator and a one-dimensional vector in P2(0, co).

1. The operator P. We consider a differential expression of the

form ly= —y"+qix)y, 0^x< oo, where qix) is an arbitrary measura-

ble complex function satisfying /0°° | qix) \ dx<<*>.

We denote by D0 those functions/defined on [0, co) and satisfying

1. /isinP2(0, co),

2. /' exists and is absolutely continuous on every finite subinterval

of [0,  co),

3. Z/isinP2(0, co).

Let P(x) be an arbitrary complex-valued function on P2(0,  co),
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