A CLASS OF RIEMANN SURFACES!
THOMAS A. ATCHISON

In this paper, a class of open simply connected Riemann surfaces
is considered and the uniformizing function and its derivative are ex-
hibited in an infinite product representation. An infinite product of
the form of the uniformizing function is then shown to produce a
surface of this class.

Definition of the class of surfaces. Let {an}; ), {bs.s}isy, and
{bg,,_l}:_l be three sequences of real numbers such that for every
positive integer n, ¢,>0, b3,—2>0, and b3,—1>0; 0<a3,_2<bzn_2; and
0 <341 <bsa—1. For each sheet, a copy of the Riemann sphere, let a
surface F consist of sheets Sy, Sy, - - -, over the Riemann sphere such
that

(1) S, is slit from a; to by,

(2) for n odd, Sz, is slit from —b3,—1 to —a3,—1 and from a;,_; to
bsa—z; for n even, Sz, is slit from —bz,_s to —a3,—3 and from ag,_; to
bSn—l’

(3) for » odd, S;, is slit from —b3,—1 to —@3s—1 and from a;, to
+ « ; for n even, S;, is slit from — « to —a3, and from az,—; to bza_1,
and

(4) for » odd, Ssn41 is slit from —b3,41 to —a3,41 and from as, to
4 ; for n even, Ssnqa is slit from — e« to —a3, and from @z, to
b3n+lo

S, is joined to S,41 by connecting the slits which have one endpoint
at *a, to form first-order branch points at the endpoints of the slits.

The uniformizing function. F is simply connected and open, hence
by the General Uniformization Theorem, there exists a unique func-
tion ¢ such that ¢ maps F one-one and conformally onto {z| |z| <R
S }, where for w=f(z) =¢~1(2), f(0) =0E.S;, and f/(0) =1.

Let a; denote the zeros of f'(z) corresponding to the first order
branch points over (—1)#*la;, while —fB;;_2 and —f;;; denote the
zeros of f'(z) corresponding to the first-order branch points over
(—1)"1bs; s and (—1)%si, respectively. Let f(8,)=0ES; for
1=2, 3, -, let f(7s:) = =, a first-order branch point over o on
Sss and Szip, let f(y1) = © €5y, and let f(y3iz) = © €831
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LeEmMMA 1. f s real for real 2z, and for k=1,
0 < o < i1 < o
and
0> —7v1> —Ba-2> —7va-1> —PBa-1> —7va > —Bas1.

ProoOF. The argument is essentially the same as that of [3, pp. 511—
512].

LEMMA 2. For each positive integer n, let F, be the first 3n+3 sheets
of F with the slit from (—1)"azn13to (—1)" o deleted. Then there exists a
rational function which maps the z-plane onto F,.

ProoF. F, is a simply connected closed surface with branch points
over @, —Qag, * * °, (— 1)”+ldsn+z, by, —bg -, (— 1)"+lb3n+2 and
with # branch points over «. F, has 3n4 3 points over the origin and
n+3 points over « which are not branch points. Then F, is the Rie-
mann surface of the inverse of a unique rational function, w= R, (z),
such that R,(0) =0E€ Sy, R/ (0) =1, and R,(®) = © € Ssays. If Ra(0k.5)
=0€S: for 2=5k=3n+3; Ri(—71n) =2 €S, Ra(—vYst-1s)=
ES3k—ly Rn('—'yzk.n) =®© €S3k) Rn(—'y3n+2,n) = ® €S3n+2 for 1 ék .—_<—n';
R, (ox,n) =0 for 1=k =<3n+2; R, (—PBst—2..) =0 for 1 <k<n+1; and
R (—Bsk-1,) =0 for 1 =k=<n+1, then

R = ] Gt G i) Gsnn) G

7:,15 k=1 (‘Y:k—l,n) (7;;:,13)2 (7:n+2,n)
and
3n+2 * n+1 - n+1 «
II (o) IT Bar—2.n) IT (Bst-1.0)
R , (z) — 1 knal kmal k=1
(7’;'”)2 n+1 * \ n * .

H (73’6—-1,") H('Y!k,n)
Kol k=1

where 8y =1—32/8;n Vin=1+2/Vim u=1—2/a;, and B}, =1

+z/6j,n.
LemMA 3. F is parabolic.

ProoF. Let D, be the z-plane slit along the real axis from asaq2,n to
+ . Then D, is mapped by w=R,(z) onto F, with the sheet Ss.43
slit from (—1)"*g3,4 to (—1)* = along the real axis. But {=¢(w)
maps this cut surface one-to-one on the domain A, of the {-plane
bounded by the curve Cs,43 and the segment (a2, asnys) and con-
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taining { =0. Thus { =¢[R.(2) | =¢¥.(z) provides a schlicht map of D,
onto A, with ¢,(0) =0 and ¥,/ (0) =1. As in the argument of [6, p. 55],
the distance from {=0 to the curve Ci, 3 is greater than ogaq2,n.

For 0<z<ay,n,

n+1

*
H B3k—2,n
1 nHl LN
~ <1, JIve-1.>1, Il Gaa?>1,
Mw yT _* k=1 kw1
H Ysk,n
k=1

and

3n+-2 *

H Qk,n > 0.

k1
Thus, if

1 1 8n+2 1
= -
q3nt2 3n+ 201 o
then
3nt+2 * 1 3n+2 * 3n+2
0 < Rn, (Z) <, H Qk,n § l: Z ak_,,:l = (1 bt Z/C-tsn+2)8"+2.
k=1 3” + 2 k=1
Hence,
@1 A
a = f R/ (5)dz < f (1 — 3/@sny0)¥2ds
0 0
At T3np2
<f 1 — 3/@3n49)%"t2dz = .
, (/) 3n+3

But

LA | 3n+2 1
Z =

-

k=1 Qk.n Q3nt2 a1
thus for 1=:53n+2,
1: 3n+2 1 1

< X <—

Qin k=1 OQk,n a

or iy <a;, for 121<3n+42, n=1, 2, - - -. Therefore, the distance
from the origin to Cj,4s is greater than (3n+42)a for all #, and F is
parabolic.
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LeEMMA 4. R,(2)—f(2) uniformly on compact subsets of the plane as
n— o,

LEMMA 5. For all k21, akn.—ock, Bsk—2n—Psk—-2 Bak—1,n—Lsk-1,
Y3k—1,n—>Y3k—1y V3k,n>Y3ky and Ox,n—0i as n—> .

Proor. These lemmas are proved in essentially the same way as
similar results are obtained in [3].

LEMMA 6. lim SUDjuw 2 31 1/dkn<© and Y g, 1/di< o for the
following cases: dixn=o0,n With §=3n+2; di,n=LPsk—2.» with j=n+1;
Qe =Bsk—1,n With j=n+1; dp n="sk1,» With j=n-+1; di,.n="3,n With
j=mn;dr = ou; di = Bat—2;di = Bar—1;dx = Yar1; and dx = ya. Also
lim SUPpaw 2 ovh 1/8kn< @ and Y pp1/8< .

Proor. If C, denotes the coefficient of z in the Taylor expansion of
log R4 (z) about the origin, then C,—K < « as n— and thus, be-
cause 0<v¥1,n <B1,ny 0 <Yst—1,n <Bsk-1,n, and 0 <Yst,n <Pse1,n)

3n42 n+l n+1

- < Cn < - E 1/ak.n - E 1/631:—1.1& - l/ﬁl.n - Zz/lg:'»k-z,n <O-

k=1 k=1 k=2

Consequently, the first three cases are established. The remaining
cases follow from the inequalities

0 < Bsi-2. < Vat—1,ny 0 < Bs—1,n < Yak\ny

and
0 < QA n < 6l¢+l.n°
LemMmA 7. If
II a: II ﬂ:k—z I1 ﬁ:k—l
) —— k=1 k=1
7!'(2-) = (7*)2 © ©
* *
! II (vsen)? I (vae)?
k=1 k=1

then f'(2) =exp(8'z)w(2) where 8’ =lim s,] with s the coefficient of z in
the Taylor expansion of log R, (2)/7(2) about the origin.

Proor. Using the ordering of «, 3, and v and Lemmas 4 and 5,
log R, (2)/m(2)—d8'z as n— .

LeMMA 8. §' =

Proor. The inequality 8’ £0 may be demonstrated using methods
similar to those of [2]. Because the factors of x(z) are canonical prod-
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ucts of genus zero, then for every ¢>0 and for 0<p =< | arg z| sST—p,
w(z) =0(e#!) and 1/7(2) =0(e*?'). Thus under the same conditions,
for R sufficiently large and zl >R, exp(8’ Re(z) —e|z| )= |f’(z)|
Sexp(d Re(z)+e|z|). For &’ <0 and |z > R, there exists ¢ >0 such
that for —57/6=<arg z< —2w/3, |f’(z) gexp(¢|zl) and for —w/3
<arg 35 —7/6, exp(—¢|2|) 2 |f (2)].

Since the distance from the origin to C,41— © as #— =, then there
exists {7a}m., such that r,— o as #—o and for every z on Cny,
|z| =7, Let 210 and z,2; be two points on C,; such that arg 2,5
= —57/6 and arg z;2;=—2w/3. As 3 traverses Cp; from 2;,2; to 2, 2,
f is real and increasing and hence f’(2)dz=0. If §' <0, then for {; and
Cein {¢| —w/3<arg {<—n/6, |¢| >R},

| £(&2) = fG) | =| L jzf’(t)dtlg L :’If'(t)l |at |

< exp(—¢R) | {2 — ¢1] -

Therefore f(z)—K, a constant, uniformly in {z] —w/3<argz< —7/6,
|z| >R} asz— . As 3— » along the ray arg 2= —m/4, f(z) <0 when
the ray crosses Cs, and f(z) >0 when the ray crosses Cj,41. Hence
K =0, and for j sufficiently large, 0> f(21,;) >f(24,2;) > —1, where
arg 242;= —m/4 and 24,9, is on Cy;. For r,; sufficiently large,

by — @y = f(32,95) — f(31,2) = f‘m f'(t) dt = exp(¢ r2;)7/6 1y

21,95

Thus as j— «, f(22.2;) —f(21,2])— «. But f(22,2;) £0, and hence f(2;.2;)
— — o, which contradicts 0> f(z,2;) > —1 for j sufficiently large.

LeEMMA 9. If

L)

s

k=2

P@) =
" E(m_x)n(vs:)z

k=1

then f(2) =exp(8z)P(z), where & is real and d=lim,., S» With s, the
coefficient of z in the Taylor expansion of log R.(z)/P(2) about the
origin.

PRrooF. Log [R,(3)/P(2)]—9z uniformly on any compact subset of
the plane as n— .

LeEMMA 10. 6=0.
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Proor. Using Lemma 4, as n— o,

n+1 n+1
0 < lim sup Is,. — s | £ limsup | X 1/ys-10 — 2 1/Bskzim
k=m k=m

n—w n— o

©

+ lim sup | X, (1/vs—1 — 1/Bu—2)

n— k=m
n n+1
+ limsup | 2 1/yaskn — 2 1/Bsk1m
n—w k=m k=m
+ limsup | Y (1/ys — 1/B3-1)
N k=m
3n+3 3n+2
+ lim sup E 1/6km — E 1/arn
n—® k=m k=m

=< lim sup 1/vsm-1,a

n—x

+ limsup | > (1/8 — 1/cx)
k=m

n—w

+ 1/v3m-1 + lim sup 1/Bsm_1,n + 1/Bsm—1 + lim sup 1/6m,4

n—0
+ 1/6m = 2/¥sm—1 + 2/Bsm-1 + 2/8n, for everym = 2.
Therefore, 6=06'=0.
Collecting the above results, we have the following theorem.

THEOREM. A surface of the above class is parabolic and the mapping
function is given by f(z) = P(z) where f'(z) = (z). Also Y rs 1/ds con-
verges for dp = o, dr = Bak—2y Gk = Bar—1, A ="Y3t-1, & ="Y3r, and di= 5.

The remainder of the paper proves the following theorem.

THEOREM. Let

= 5:::-1 5:1: 5:&: 1
9 = £ 7 G060k

Vg k=1 (v3i1) (‘Yz‘,c)2

where Y 4o 1/8, and Y 5y 1/y: converge, and for every integer k,
0 <41 <0ie and 0<y1<vys1<vs <7Vaete. Ihe Riemann surface of
the inverse of f(2) is of the class described above.

LeEMMA 11. There exists a sequence of rational functions R,(z) such
that R,(z)—f(2) uniformly on compact subsels of the plane and such that
the paths other than the real axis on which R,(z) is real are 3n simple,
closed, nonintersecting curves each symmetric with respect to the real axis.
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Proor. Consider

2 n (Bokes) (Bow) (Busra)
Ri(x) = — :
® =1l =5

Using Rolle’s theorem, at least 3n zeros of R, (z) are determined
such that 0 <1, <8:<@2,0 < * + + <0O3g,0n <03n41, at least 22 zeros of
R, (2) are determined such that 0> —y1> —B1,,> — 72> —Bem> « - -
> —Bant2.n> —Ysm, and R,(2) has # first-order branch points over the
poles at —vs.. The indicated critical points of R.(z) account for the
total branch order, 6%, of the rational function.

Through each value of ax,s, B,», and vz, passes a curve in addition
to the real axis on which R,(2) is real. Since R,(2) = [R.(z)]~, where
[ ]~ means complex conjugate, these curves are symmetric about the
real axis, and because « is not a critical point, the curves are simple,
closed, nonintersecting ones each of which intersects the real axis at
two points. A consideration of the order of ax,s, Bi.», and ys,, will
show that the 3n curves, Ci,, on which R,(2) is real intersect the
real axis at ay,, and —B,» OF a3k,n and —Y3x,n.

LEMMA 12. Any ray from the origin intersects each curve Cy,, exactly
once.

PROOF. R, (2) =P.(2)/0.(2) where deg P,(2) =3n+1 and deg 0.(z)
=3n+1. The condition that z is a point on C;,, or the real axis is that

2i5[Ra(2)] = Ra(2) — [Ra(2)]~ = Pu(2)/Qn(z) — Pa(2)/Qa(®) = 0.

Hence on Ci.n, F(x, y) =Pu(3)Qa(2) — Po(2) Qn(2) =0. F(x, ¥) is of de-
gree at most 6n-+1 in x and y simultaneously. Any line y=mx or
x=my intersects each (., at least twice, and these 67 intersections
together with one at the origin make a total of 6n-1 intersections,
the maximum number of solutions of F(x, mx) =0 and F(my, y) =0.

LeMMA 13. The points of Cr,» tend to the points of a curve Cras n— o
where C intersects the real axis at oy and —Pi or —vi. Any ray from
the origin intersects Cy exactly once, Cy is symmetric about the real axis,
and Ci does not pass through z= o, ‘

Proor. This lemma is demonstrated in a manner similar to the
demonstration of Lemma 14 of [2].

LemMA 14. f(2) is a schlicht and conformal map of the upper half of
the annular region between C; and Cjpy onto 3 { (— l)fw} >0.

Proor. This follows using Darboux’s theorem.
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THE ADJOINT OF A DIFFERENTIAL OPERATOR
WITH INTEGRAL BOUNDARY CONDITIONS

ALLAN M. KRALL

In [1] a second-order differential operator was defined on those
functions in L2(0, ») satisfying an integral-point type of boundary
condition. An analysis of its spectrum and two “eigenfunction” ex-
pansions follows. Left unanswered was the problem of finding the
adjoint operator and explaining where the nonhomogeneous expan-
sion came from. We now derive the adjoint operator, classify its
spectrum and show that the nonhomogeneous expansion is, in fact,
the eigenfunction expansion associated with the adjoint operator. It
is interesting to see that the adjoint operator is a combination of a
differential operator and a one-dimensional vector in L%(0, «).

1. The operator L. We consider a differential expression of the
form ly= —y" 4q(x)y, 0 Sx < », where ¢(x) is an arbitrary measura-
ble complex function satisfying fg’ I q(x)l dx < o,

We denote by D, those functions f defined on [0, «) and satisfying

1. fisin L2(0, «),

2. f exists and is absolutely continuous on every finite subinterval
of [0, =),

3. lf is in L*(0, «).

Let K(x) be an arbitrary complex-valued function on L2(0, «),
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