A MOMENT PROBLEM IN L_1 APPROXIMATION

CHARLES R. HOBBY¹ AND JOHN R. RICE²

1. Introduction. The purpose of this paper is to show the existence of a solution to a certain moment problem which arises in the study of approximation in the L_1 norm

$$||f|| = \int_0^1 |f| d\mu.$$

Let n be a fixed, but arbitrary, integer and consider the sign function s(A, x) = s(A) defined on [0, 1] by

(1)
$$s(A, x) = \begin{cases} +1 & x \in (a_i, a_{i+1}) & i \text{ even,} \\ 0 & x = a_i, \\ -1 & x \in (a_i, a_{i+1}) & i \text{ odd} \end{cases}$$

where A stands for the vector (a_1, a_2, \dots, a_n) and the convention is made that $a_i \le a_{i+1}$, $a_0 = 0$, $a_{n+1} = 1$. Thus s(A) is simply a step function taking on the values ± 1 with at most n sign changes. Let μ be a finite, nonatomic measure on [0, 1] such that every s(A) is measurable and let $\{\phi_i | i = 1, 2, \dots, n\}$ be n functions integrable on [0, 1]. We may now state the

Moment Problem. Determine A* so that

(MP)
$$\int \phi_i s(A^*) d\mu = 0, \quad i = 1, 2, \cdots, n.$$

In order to discuss L_1 approximation let \mathfrak{L} be a linear subspace of the space of integrable functions and suppose \mathfrak{L} is spanned by $\{\phi_i\}$. Set

$$L(\alpha) = \sum_{i=1}^{n} \alpha_i \phi_i$$

and let f be an arbitrary integrable function not in \mathcal{L} . $L(\alpha^*)$ is said to be a best approximation to f if

Presented to the Society, March 29, 1963 under the title A moment problem; received by the editors March 22, 1964.

¹ This author was partially supported by the National Science Foundation under grant NSF G-19915.

² This work was done while this author was at the General Motors Research Laboratories.

$$||L(\alpha^*) - f|| \le ||L(\alpha) - f||$$

for all α .

Suppose that one knows a sign function s(A) for which (MP) holds. One can then interpolate f at n canonical points $\{a_i\}$ and, in most but not all cases, obtain a best approximation. This procedure is elaborated upon in [9], [10], [12]. The main result of this paper guarantees the existence of a set of canonical points for any choice of $\{\phi_i(x)\}$. It also has application for nonlinear L_1 approximation [10].

The first connection in which the moment problem arises is as follows: Set

$$Z(\alpha) = \{x \mid f(x) = L(\alpha, x)\}.$$

We have the following

CHARACTERIZATION THEOREM. A necessary and sufficient condition for $L(\alpha^*)$ to be a best approximation to f is that

(2)
$$\left| \int L(\alpha) \operatorname{sgn} \left[f - L(\alpha^*) \right] d\mu \right| \leq \int_{Z(\alpha^*)} \left| L(\alpha) \right| d\mu$$

holds for all α .

It is difficult to determine the first correct statement and proof of this result, but it is given in full generality in [3]; for ordinary Lebesgue measure it follows from Theorem 1 of [13]. The hypothesis that μ is nonatomic and s(A) is measurable is not required in this theorem.

There is an interesting special case of this theorem which has sometimes [1], [11] been mistaken for the characterization theorem itself. That is the following

COROLLARY. If the measure of $Z(\alpha^*)$ is zero, then a necessary and sufficient condition for $L(\alpha^*)$ to be a best approximation to f is that

(3)
$$\int L(\alpha) \operatorname{sgn} \left[f - L(\alpha^*) \right] d\mu = 0$$

for all α .

A secondary connection in which the moment problem arises is with the study of the *Haar Property*. It has recently been shown [7], [8] that no finite dimensional subspace has the Haar Property. Essential to both proofs (which are essentially the same) of this is the establishment of the solution of a certain moment problem by the use of a

theorem of Liapounoff [6]. The existence of a solution of (MP), established here, is sufficient for these proofs for $L_1([0, 1], \mu)$.

II. The theorem and proof. The proof that the moment problem possesses a solution is outlined as follows. One considers the functions

$$\Phi_{i}(A) = \int \phi_{i} s(A) d\mu
= \int_{0}^{a_{1}} \phi_{i} d\mu - \int_{a_{1}}^{a_{2}} \phi_{i} d\mu + \cdots + (-1)^{n} \int_{a_{n}}^{1} \phi_{i} d\mu$$

for $i=1, 2, \dots, n$. The functions (4) are continuous functions of A since μ is a finite nonatomic measure. One shows that the domain of definition of each Φ_i may be identified with the n-ball

$$B^n = \left\{ A \left| \sum_{i=1}^n a_i^2 \le 1 \right\} \right. \cdot$$

One considers the transformation M of B^n into the n-1 sphere

$$S^{n-1} = \left\{ A \, \middle| \, \sum_{i=1}^{n} a_i^2 = 1 \right\}$$

defined by

(5)
$$M: A \to \frac{(\Phi_1(A), \Phi_2(A), \cdots, \Phi_n(A))}{\sqrt{\sum [\Phi_i(A)]^2}}.$$

This transformation is a continuous mapping unless all of the $\Phi_i(A)$ are simultaneously zero for some A, i.e., unless the moment problem has a solution. One may show that if A_1 and A_2 are pairs of antipodal points on B^n then

$$\Phi_i(A_1) = -\Phi_i(A_2).$$

Thus M carries pairs of antipodal points of B^n into pairs of antipodal points of S^{n-1} . It is known that such a transformation cannot be continuous.

The remainder of this section contains a detailed exposition of this proof.

LEMMA 1. The function $\Phi_i(A)$ is a continuous function of A.

PROOF. This follows from Holder's inequality and some well-known facts from measure theory [2]. In particular if μ is nonatomic then the measure of a finite point set is zero.

The functions $\Phi_i(A)$ are defined in (4) on the *n*-simplex

$$K_n = \{ A \mid 0 \leq a_1 \leq \cdots \leq a_n \leq 1 \}.$$

A specific continuous identification is now constructed which identifies K_n with B^n such that the Φ_i are well defined on B^n and, the essential point, in such a way that if A_1 and A_2 are pairs of antipodal points of B^n then (6) holds.

Thus we inductively construct a mapping ψ_n for each $n \ge 2$ which has the properties

- (a) $\psi_n(0, x_2, \dots, x_n) = -\psi_n(x_2, \dots, x_n, 1)$ and each of these points is on the boundary of B^n .
 - (b) $\Phi_i(\psi_n(A))$ is well defined. That is to say if

$$\psi_n(A) = \psi_n(B)$$
 then $\Phi_i(A) = \Phi_i(B)$.

It is easily verified from the specific form (4) of $\Phi_i(A)$ that property (b) follows from the following property

(b') if $\psi_n(x_1, \dots, x_n) = \psi_n(y_1, \dots, y_n)$ then for some k, k of the x_i are equal to k of the y_i and the remaining x_i are equal to each other and the remaining y_i are equal to each other.

We now show ψ_2 explicitly. Set $\psi_2(0, a) = (x, y)$ where $y = 2(a - \frac{1}{2})$ and $x = -\sqrt{(1-y^2)}$. Set $\psi_2(a, 1) = -\psi_2(0, a)$, $\psi_2(\frac{1}{2}, \frac{1}{2}) = (0, 0)$. For the remaining points in K_2 , for $0 \le t \le 1$ set

$$\psi_2[t(\frac{1}{2},\frac{1}{2})+(1-t)(0,\alpha)]=(1-t)\psi_2(0,\alpha),$$

$$\psi_2[t(\frac{1}{2},\frac{1}{2})+(1-t)(a,1)]=(1-t)\psi_2(a,1).$$

We note that every point in K_2 is of the form $t(\frac{1}{2}, \frac{1}{2}) + (1-t)(0, a)$ or $t(\frac{1}{2}, \frac{1}{2}) + (1-t)(a, 1)$ for $0 \le t \le 1$. Further $\psi_2(x_1, x_2) = \psi_2(y_1, y_2)$ if and only if $x_1 = x_2 = \frac{1}{2} - t$, $y_1 = y_2 = \frac{1}{2} + t$. Thus ψ_2 is a mapping of K_2 onto B^2 with properties (a) and (b').

We define the continuous mapping ψ_{n+1} from ψ_n as follows. Here $|\psi_n(x_1, \dots, x_n)|$ denotes the usual Euclidean norm of $\psi_n(x_1, \dots, x_n)$.

(7)
$$\psi_{n+1}(0, x_1, \dots, x_n)$$

$$= (- [1 - |\psi_n(x_1, \dots, x_n)|]^{1/2}, -\psi_n(x_1, \dots, x_n)),$$

(8)
$$\psi_{n+1}(x_1, \dots, x_n, 1) = -\psi_{n+1}(0, x_1, \dots, x_n),$$

(9)
$$\psi_{n+1}(\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2}) = (0, 0, \cdots, 0),$$

(10)
$$\psi_{n+1}(t(\frac{1}{2}, \dots, \frac{1}{2}) + (1-t)(0, x_1, \dots, x_n))$$

= $(1-t)\psi_{n+1}(0, x_1, \dots, x_n), \quad 0 \le t \le 1,$

(11)
$$\psi_{n+1}(t(\frac{1}{2}, \dots, \frac{1}{2}) + (1-t)(x_1, \dots, x_n, 1))$$

= $(1-t)\psi_{n+1}(x_1, \dots, x_n, 1), \quad 0 \le t \le 1.$

Since ψ_n maps K_n onto B^n it follows from (7) and (8) that ψ_{n+1} is at least onto the boundary of B^{n+1} and hence it follows from (9), (10) and (11) that ψ_{n+1} maps all of K_{n+1} onto B^{n+1} .

It is clear that ψ_{n+1} is continuous except possibly at the interface between the regions mapped by (10) and (11). Points in that interface are of the form $(a, x_1, \dots, x_{n-1}, b)$ where a+b=1. The mapping is well defined for these points if it is well defined for the points of the interface which map into the boundary of B^{n+1} . These points are of the form $(0, x_1, x_2, \dots, x_{n-1}, 1)$ and one may verify that (7) and (8) both map this point into the same point of B^{n+1} .

That ψ_{n+1} has property (a) follows directly from (7) and (8).

To establish (b') suppose that $\psi_{n+1}(x_1, \dots, x_{n+1}) = \psi_{n+1}(y_1, \dots, y_{n+1}) = B$. Suppose, for concreteness, that the first coordinate of B is negative. Then ψ_{n+1} is defined by (10). Thus

$$B = (1-t)\psi_{n+1}(0, u_1, \cdots, u_n) = (1-s)\psi_{n+1}(0, v_1, \cdots, v_n)$$

where

(12)
$$(x_1, \dots, x_{n+1}) = t(\frac{1}{2}, \dots, \frac{1}{2}) + (1-t)(0, u_1, \dots, u_n),$$

$$(y_1, \dots, y_{n+1}) = s(\frac{1}{2}, \dots, \frac{1}{2}) + (1-s)(0, v_1, \dots, v_n).$$

Since $|\psi_{n+1}(0, u_1, \dots, u_n)| = |\psi_{n+1}(0, v_1, \dots, v_n)| = 1$ it follows that s = t and $\psi_n(u_1, \dots, u_n) = \psi_n(v_1, \dots, v_n)$. By property (b') for ψ_n we have that k of the u_i equal k of the v_i , while the remaining u_i are equal and the remaining v_i are equal. Since s = t it follows from (12) that ψ_{n+1} has property (b'). A similar argument applies if the first coordinate of B is positive.

The following lemma is well-known [4].

LEMMA 3. There exists no continuous mapping of B^n into S^{n-1} such that pairs of antipodal points are mapped into pairs of antipodal points. The main theorem may now be established.

THEOREM. The moment problem (MP) has a solution for any set $\{\phi_i\}$ of n integrable functions.

PROOF. It has been established that the domain K_n , $n \ge 2$ of definition of $\Phi_i(A)$ may be mapped onto B^n with properties (a) and (b). In particular, a pair A_1 , A_2 of antipodal points satisfies (6). The mapping (5) is thus well defined and continuous unless

(13)
$$\Phi_{i}(A) = 0, \quad i = 1, 2, \dots, n.$$

Since M takes B^n into S^{n-1} with pairs of antipodal points going into

pairs of antipodal points, it follows from Lemma 3 that M is not continuous and hence (13) is satisfied for some A. The proof is trivial if n=1. This concludes the proof.

It is of some interest to note [5] that if the ϕ_i are continuous and form a Tchebycheff set, then s(A) is uniquely determined and must have exactly n sign changes.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958; p. 371.
 - 2. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
- 3. B. R. Kripke and T. J. Rivlin, Approximation in the metric of $L^1(X, \mu)$, Trans. Amer. Math. Soc. 119 (1965), 101-122.
- 4. S. Lefschetz, *Introduction to topology*, Princeton University Press, Princeton, N. J., 1949; p. 141.
- 5. P. Laasonen, Einige Sätze über Tschebyscheffsche Funktionensystems, Ann. Acad. Sci. Fenn. 52 (1949), 3-24.
- 6. A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Izv. Akad. Nauk SSSR 4 (1940), 465-478.
- 7. R. M. Moroney, *The Haar problem in L*₁, Proc. Amer. Math. Soc. 12 (1961), 793-795.
- 8. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximations, Trans. Amer. Math. Soc. 95 (1960), 235-255.
- 9. J. R. Rice, The approximation of functions, Vol. I, Chapter 4, Addison-Wesley, Reading, Mass., 1964.
- 10. —, On the computation of L_1 approximations by exponentials, rationals and other functions, Math. Comp. 18 (1964), 390–396.
- 11. I. Singer, Caractérization des éléments de meilleure approximation dans un espace de Banach quelconque, Acta. Sci. Math. (Szeged) 17 (1956), 181-189.
- 12. A. F. Timan, Theory of approximation of functions of a real variable, Moscow, 1960; English Transl., MacMillan, New York, 1963; Section 2.8.
- 13. J. L. Walsh and T. S. Motzkin, Polynomials of best approximation on an interval, Proc. Nat. Acad. Sci. 45 (1959), 1523-1528.

University of Washington and Purdue University