A MOMENT PROBLEM IN L; APPROXIMATION
CHARLES R. HOBBY! AND JOHN R. RICE?

1. Introduction. The purpose of this paper is to show the existence
of a solution to a certain moment problem which arises in the study
of approximation in the L; norm

= [ 171 dw

Let # be a fixed, but arbitrary, integer and consider the sign func-
tion s(4, x) =s(4) defined on [0, 1] by

+1 xE (ai aiy1) 1 even,
1) s(4, x) = 0 x=uaq,
-1 =« E (d-,', d.'+1) 1 odd

where A stands for the vector (ai, as, + + +, @,) and the convention
is made that ¢;=Za..1, 60=0, a,;1=1. Thus s(4) is simply a step
function taking on the values +1 with at most » sign changes. Let u
be a finite, nonatomic measure on [0, 1] such that every s(4) is
measurable and let {¢.~| 1=1,2,-:-, n} be # functions integrable on
[0, 1]. We may now state the

MOMENT PROBLEM. Determine A* so that
(MP) fq&.«s(A*)d“ =0, i=12"---,n.

In order to discuss L; approximation let £ be a linear subspace of
the space of integrable functions and suppose £ is spanned by {¢.}.
Set

n

L) = D aips

i=1

and let f be an arbitrary integrable function not in £. L(a¥*) is said
to be a best approximaiion to f if
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L(e*) = Al = | () — 1|

for all a.

Suppose that one knows a sign function s(4) for which (MP) holds.
One can then interpolate f at # canonical points {a;} and, in most but
not all cases, obtain a best approximation. This procedure is elabo-
rated upon in [9], [10], [12]. The main result of this paper guarantees
the existence of a set of canonical points for any choice of {¢:(x)}.
It also has application for nonlinear L, approximation [10].

The first connection in which the moment problem arises is as fol-
lows: Set

Z(a) = {x|f(x) = L(a, x)}.
We have the following

CHARACTERIZATION THEOREM. A necessary and sufficient condition
for L(a*) to be a best approximation to f is that

2) | J 2@ sen [f - Lo = fz @l

holds for all c.

It is difficult to determine the first correct statement and proof of
this result, but it is given in full generality in [3]; for ordinary
Lebesgue measure it follows from Theorem 1 of [13]. The hypothesis
that u is nonatomic and s(A4) is measurable is not required in this
theorem.

There is an interesting special case of this theorem which has some-
times [1], [11] been mistaken for the characterization theorem itself.
That is the following

COROLLARY. If the measure of Z(a*) is zero, then a necessary and
sufficient condition for L(c*) to be a best approximation to f is that

@3 [ 26 sen [ — Ll = 0

for all .

A secondary connection in which the moment problem arises is
with the study of the Haar Property. It has recently been shown [7], [8]
that no finite dimensional subspace has the Haar Property. Essential
to both proofs (which are essentially the same) of this is the establish-
ment of the solution of a certain moment problem by the use of a
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theorem of Liapounoff [6]. The existence of a solution of (MP),
established here, is sufficient for these proofs for Ly([0, 1], u).

II. The theorem and proof. The proof that the moment problem
possesses a solution is outlined as follows. One considers the functions

(4) = [ o)
@)

ay as 1
f didu — Gidu + - - -+ (— 1)"f didu
0 a1 Gn
for =1, 2, - - -, n. The functions (4) are continuous functions of 4

since u is a finite nonatomic measure. One shows that the domain of
definition of each ®; may be identified with the n-ball

Br = {A >as 1} :
1=1
One considers the transformation M of B" into the #—1 sphere

ia:=1}

$=1

St = {A

defined by
_ (@A), Ba(4), -, u(4)

4/ 2 [2)]

This transformation is a continuous mapping unless all of the ®,(4)
are simultaneously zero for some 4, i.e., unless the moment problem
has a solution. One may show that if 4, and A4, are pairs of antipodal
points on B» then

(6) ®(A41) = — D(4).

Thus M carries pairs of antipodal points of B* into pairs of antipodal
points of S»~1 It is known that such a transformation cannot be
continuous.

The remainder of this section contains a detailed exposition of this
proof.

(5) M:A

LEMMA 1. The function ®,(A) is a continuous function of A.

Proor. This follows from Holder’s inequality and some well-known
facts from measure theory [2]. In particular if u is nonatomic then
the measure of a finite point set is zero.
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The functions ®;(4) are defined in (4) on the n-simplex
K,={4]02a = - 24 =1}

A specific continuous identification is now constructed which identi-
fies K, with B® such that the ®; are well defined on B" and, the essen-
tial point, in such a way that if 4; and A4, are pairs of antipodal points
of B» then (6) holds.

Thus we inductively construct a mapping ¢, for each =2 which
has the properties

@) ¥a(0, 23, + + -, %)= —Yn(xs, - - -, %a, 1) and each of these
points is on the boundary of B~.

(b) ®:(¥.(4)) is well defined. That is to say if

¥a(4) = ¢u(B) then ®,(4) = &(B).

It is easily verified from the specific form (4) of ®;(4) that property
(b) follows from the following property

B if Yuloer, + + +y %0) =¥u(yy, * + +, ¥o) then for some k, k of the
x; are equal to k of the y; and the remaining x; are equal to each other
and the remaining y; are equal to each other.

We now show ¢, explicitly. Set ¢»(0, a) = (x, y) where y=2(a—3%)
and x=—~+/(1—v?). Set ¢a(a, 1) = —¢»(0, a), ¥a(3, 3) = (0, 0). For the
remaining points in K, for 0=<¢=1 set

¥altG, ) + 1 = 00, 9] = (1 = )0, @),
¥alt3, 3) + (L= 0)(a, D] = (1 = )ya(a, 1).
We note that every point in K is of the form ¢(, 3)+(1—%)(0, a) or
t, H+ (A —1t)(a, 1) for 0=t =1. Further ya(x1, x2) =¢¥a(y1, ¥2) if and
only if xy=x.=%—t, y1=y.=%+¢. Thus ¥, is a mapping of K, onto
B? with properties (a) and (b’).
We define the continuous mapping ¥,41 from ¢, as follows. Here
|¢n(xl, cee ,x,,)| denotes the usual Euclidean norm of Y, (x1, « - -, %,).

‘I’n+1(0) X1y * 0y xn)

7

( ) = (— [1 - l'pn(xl) T xn) | ]1/2) - ‘Pn(xl) ) xﬂ))y
)] Vnpr(®y, © 0y %y 1) = — ¥0a(0, @, - - -, Xn),

(9) 'I/n+l(%a %’ Tty %) = (O’ 0,---, 0),

(10) Yua(tG, - -, 3 + A =00, 21, - - -, 2))

=1 = OYn1(0, 1, - - -, x,), 0= ¢
(1) YuralG - - D+ A = O(x, - -+, 2, 1))

=1 = Onpalxy, -+ -, %, 1), 0=2¢ =1,

IA
‘l—‘
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Since ¥, maps K, onto B* it follows from (7) and (8) that ¢,,11s at
least onto the boundary of B»*+! and hence it follows from (9), (10)
and (11) that ¢,,1 maps all of K, 1 onto B+l

It is clear that ¥,,1 is continuous except possibly at the interface
between the regions mapped by (10) and (11). Points in that interface
are of the form (a, %y, - - -, %1, b) where a+b=1. The mapping is
well defined for these points if it is well defined for the points of the
interface which map into the boundary of B»*l. These points are of
the form (0, %1, %2, * * * , -1, 1) and one may verify that (7) and (8)
both map this point into the same point of B+,

That ¥, 41 has property (a) follows directly from (7) and (8).

To establish (b) suppose that Yuia(x1, « « * ) %ng1) =¥a1(y, * - ) Yag)
= B. Suppose, for concreteness, that the first coordinate of B is nega-
tive. Then y,41 is defined by (10). Thus

B = (1 - t)¢n+l(o’ Ui, = * un) = (1 - s)‘l’n+1(0’ U1, * 0, '”n)
where
(xh' : '1xn+l)=t(%" . '7%)+(1—t)(0)u1,°' '7un))

(12)

(yl)' "yyn+1) =S(%,' : ';%)—l—(l_s)(ofvl: T, Ua).
Since |¢n+1(0, Uy, * - ,un)l = |¢n+1(0, vy, e ,v,,)] =1 it follows that
s=tand Yn(uy, - - -, Ua) =¥u(v1, - - -, va). By property (b’) for ¢, we

have that % of the u; equal & of the v;, while the remaining u, are equal
and the remaining v; are equal. Since s=¢ it follows from (12) that
¥ny1 has property (b’). A similar argument applies if the first coordi-
nate of B is positive.

The following lemma is well-known [4].

LeEMMA 3. There exists no continuous mapping of B™ into S*1 such
that pairs of antipodal points are mapped into pairs of antipodal points.
The main theorem may now be established.

THEOREM. The moment problem (MP) has a solution for any set
{¢:} of n integrable functions.

Proor. It has been established that the domain K,, =2 of defini-
tion of ®;(4) may be mapped onto B* with properties (a) and (b). In
particular, a pair 4,, 4, of antipodal points satisfies (6). The mapping
(5) is thus well defined and continuous unless

(13) ®;(4) =0, i=1,2.--,m.
Since M takes B» into S*—! with pairs of antipodal points going into
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pairs of antipodal points, it follows from Lemma 3 that M is not con-
tinuous and hence (13) is satisfied for some A. The proof is trivial
if n=1. This concludes the proof.

It is of some interest to note [5] that if the ¢, are continuous and
form a Tchebycheff set, then s(4) is uniquely determined and must
have exactly # sign changes.
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