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Of frequent appearance in the literature are those integral equa-

tions which take the form (1), below. These are commonly called

convolution-type equations.

(1) XF(x) -  f F(t)K(x -t)dl = Gix)       for x G S.
J s

In particular, when 5 is the whole real line we obtain the standard

convolution equation. Again when 5 is the half line (0, <*>), we obtain

the Wiener-Hopf equation. S= [0, l] is still another of the classical

equations, known to aerodynamicists as the "lifting line equation."

We will be concerned with the uniqueness question for the equation

(1), but in the following special sense: We wish to determine condi-

tions on X and the kernel function K, together with class conditions

on K and P, which will insure the uniqueness of the solution of (1)

for all (measurable) sets 5.

For each fixed S, uniqueness is equivalent to the statement:

(2) If XF(x) =   f F(t)K(x - t) dt for all x G 5 then F(x) = 0.
•'s

Thus, if we redefine F to be 0 in the complement of S, (2) becomes

(3) XF = F*K   iorxES,       F = 0   for x <$ 5 =» F = 0.

And the logical conjunction of the statements (3) for all (measura-

ble) sets 5 is simply:

(4) If, for each x, either F(x) = 0 or XF(x) = (F*X)(x), then F(x) s 0.

It is thus our task to find conditions under which (4) holds.

We choose as our setting an arbitrary locally compact abelian

group G with Haar measure dt. The class conditions will be Kit)

EL^G), F(0GPM(G).
Now let P(£) be the Fourier transform of Kit). As £ varies through

the elements of G, P(£) traces out a point set in the complex plane.
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We call this point set Ck, and the closed convex hull of Ck we call

HK.

Theorem. Let K(t) have compact support. //XG#x then (4) holds.

Of course, by the previous discussion, this theorem can be restated

directly in terms of the original uniqueness question. This restate-

ment can be given as follows:

Theorem. Let K(t) have compact support and let \EHk- For any

(measurable) set S and any function G(x), the integral equation (l) has

at most one solution.

We apologize for the onerous restriction to K of compact support.

It is undoubtedly an unnecessary one. For G the real line, it can be

relaxed to the condition that K falls off exponentially. It may even

be that no growth condition whatever on K is needed! The author is

simply unable to decide this question.

The condition expressed in this theorem is by no means best pos-

sible, but there is a kind of converse in the case of a Hermitian kernel     «

(i.e., one where K( — t) =K(t)*).1 This converse reads: If (4) holds,

X?¿0, and G is connected, then X$Hj.

For proof, note that K(i;) is continuous and real valued so that Ck

is a connected real set, and that Hk=Ck or Hk=Ck^0. In either

case, since Xf^O, }iEHK=^XECK=^K = foX(t)K(t) dt for some char-

acter X(t). If this were so, the choice F(t)=X( — t) would contra-

dict (4).
In other cases the actual necessary and sufficient conditions to

insure (4) seem very difficult to obtain. Almost the simplest example,

that of the group of the integers, already gives (interesting) trouble.

If K consists of a single mass point, then our condition is necessary

and sufficient. Suppose, however, that we define our kernel, K(n), as

follows:

K(\)= -2, K(2)= -1, K(n)=0 for all other ra, and restrict our

attention to positive X.

Accordingly, the condition, XEHk, becomes the condition X>3/2.

It can be shown, however, that the actual necessary and sufficient

condition for (4) is the condition X > y/2 !

From now on we normalize by setting X = 1 and before turning to

our proof we would like to present the heuristic argument on which

it is based. This heuristic argument is actually rigorous in the case

of a compact G but is whimsical otherwise since we make use of the

"Fourier transform" of F(t).

We use z* to denote the complex conjugate of z.
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We are given that F(x)[F(x) — (F*K)(x)] = 0 identically. Thus

JaF(x) [F(x) — (F*K) (x) ] dx = 0. Applying Parseval's theorem we ob-

tain, then, JgHO*[H6 -P(Ç)£(£)] d£ = ° (where F(£) is the Fourier
transform of F(t)). Hence, unless F(%) vanishes a.e. (i.e., F(t)^0),

we conclude that

f |*(ö \»Ê(Q di
J G
-  =   1,

(A Hol2 dt
J G

and this shows that 1 EHr-

We now turn to the somewhat intricate "truncation" process

which supplies the rigor to these heuristic arguments.

Proof of Theorem. We assume that the hypotheses hold, viz.,

that 1<$.HK, that |F| £1, and that | F\ 2= F(F*K) identically. We
can express the first of these conditions by the existence of a complex

number a such that

(5) Re[a(l - £({))] ^ 1        for all { G G.

Now let XoEG be an arbitrary point and let F be a symmetric com-

pact set containing 0, a neighborhood of x0, and the support of K.

We denote by V", as usual, the set of all Xi+x2-\- ■ ■ • + x„ with

x,G V. We now define, for some «>2, a function,/, by

(6) / = F in V*,       / = 0 outside V».

Now Vn is compact since -f- is a continuous function on the com-

pact space VX VX V ■ • ■ . Hence/has compact support and so, since

FEL», we have

(7) fELir\ L1.

Next consider the function |/| 2—f(f*K). Clearly this vanishes out-

side Vn. We claim that it also vanishes inside Vn~x. For let xG Vn~x,

now unless K(x — t) —0 it follows that x — tE V and we conclude that

tEVn, so that f(t) = F(t). Thus fGf(t)K{x-t)dt = f0F(t)K(x-t)dt
for all xE F"-. Hence, for these x, \f\ 2-f(f*K) = \ F\*-F(F*K)=0
by hypothesis.

If we write A= Vn— Vn~x, then, we can sum up these remarks in

(8) I /|2 -f(f*K) = 0    outside A.

Estimating |/| 2—f(f*K) inside A is our next task. Clearly
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(9)

f i/i»-/(ml
J A I

eA,¡6F,x-ÍSF»

F(x) ¡ I F(x - 0 I I P(0 I dxdl.

Note, however, that the conditions xG Fn_1 and ¿G F insure that

x — ¿GF"-2. Combining this with x —¿GF" insures that x —¿GFn

- F"-2. Calling A'= F"- Vn~2, then, we may conclude that

(10)

Fix)Fix - t)K(t) | dxdt
i€i,¿ev,x-í6V"

•J   >J T.CA>.

Fix)Fix - t)K(f) | dxdt.
xeA',x-teA'

For each fixed t, however, Schwarz' inequality tells us that

(ID
xeA'.l-iSA

and so (10) yields

f f | Fix)Fix -t)\dx£   f  I Fix) |2
»>    J *(=A' .z—t.(=A' J A'

dx

(i2) r r       i f(x)f(x - ojt(o i dxdt ̂ r i k i • r i f \
J JzeA.tev.x-teV" Jq Ja'.tev.z-tev»

Combining (12) with (9) now yields

(13) LiV-'til'K) <(1+/.lXl)/j'1'-

By virtue of (8), however, (13) can be written

(14)     I  f \f\2-'fif*K)
I J a

ÚM \    \F\2,    where    M=l+f|x|.

Parseval's theorem is now justified by (7), and its application gives

(15) I ij/Kl-P)   ÚM f \F\2.
\Jg J A'

Applying (5) to (15) allows the conclusion,

(i6) r i/i2 g if i «i r if|2,
J G J A'

and another application of Parseval's theorem yields
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(17) f |/|2 =   f  \F\^M\a\ f |F|2.
J Q J yn J &r

Finally (17) may be rewritten

(18) I       |F|2^ (1 -8)  I    I F |2,    where   5 = —¡—f-
J yn-2 Jyn M \  a \

Repeated application of (18) now gives

(19) f  I F |2 g (1 - ô)"-1 f    I F |2 ̂  (1 - S)n-1w(F2")
J yi J y2n

(where m denotes Haar measure).

We now require the following:

Lemma. Let V be any compact subset of G. There exist constants c

and d such that m(Vn) ^cnd, for all n.

Proof. Let U be an open set containing V, such that its closure,

U, is compact. Since U2 is compact and since it is covered by the

totality of translates x+U, it follows that i/2CUf=0 (xi+U), for

some finite collection of x¿. Hence c72CUf=0 (x,+ i7) and, by induc-

tion, UnCUj (yj-r U), where the y¡ run through all the possible

choices of Xjj+Xij-r- • • • +x,n_,. Since the number of such choices is

/n + d - 1\

V        d       )'

however, we conclude that

in + d - 1\
m(Vn) g m(Un) g ( Jm(U).

This last expression is ^cnd for an appropriate choice of c, how-

ever, and the proof is complete.

If we now combine the result of this lemma with (19) above we

conclude that

(20) f  |F|2^(l-5)**-1cO)<i,
J yi

and letting n—>«> tells us that fy*\ F| 2 = 0, or

(21) F = 0 a.e.,        in V2.

But, for xEV, F*K=fvtF(t)K(x-t)dt and so, by (21), F*K = 0
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throughout V. By hypothesis, however, | F\2 = F(F*K), and so F = 0

identically throughout V.

In particular, then, F vanishes identically in a neighborhood of x0.

Since x0 was arbitrary F vanishes identically and the proof is com-

plete.

Yeshiva University

DEFINITE AND QUASIDEFINITE SETS OF
STOCHASTIC MATRICES'

AZARIA PAZ

1. Introduction. This note is concerned with asymptotic behaviour

of long products of stochastic matrices of a given form. Its objects are:

(a) To prove that a theorem stated (but not proved) by the author

in a previously-published paper [2] is equivalent to one proved by

Wolfowitz in [l].

(b) To formulate a decision procedure for the above problem,

preferable to that given by Wolfowitz in [l].

(c) To solve a related problem.

Familiarity with the above two papers is desirable.

2. Definitions. (We adopt here some of the definitions used by

Wolfowitz.) A finite square matrix P = ||^,,|| is called stochastic if

pa^O for all i, j and 53 jpu=l for all i.
A stochastic matrix P is called indecomposable and aperiodic

(S.I.A.) if

Q = lim P"
n—»00

exists and all rows of Q are the same. |P| and 8(P) are defined as

I PI   = max I Pa I ,

d(P) = max max | phi — piti \ .
i      hh

With every stochastic matrix P we associate a finite graph having

ra states (vertices)—ra being the order of P—such that transition is
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