ORDER CONVERGENCE AND TOPOLOGICAL CONVERGENCE

RALPH E. DEMARR

In a complete lattice it is possible to define a notion of convergence (for arbitrary nets) known as order convergence (o-convergence); for definitions see [1, p. 59] and [3, p. 65]. As a general rule o-convergence is not a topological convergence; i.e., the lattice cannot be topologized so that nets o-converge if and only if they converge with respect to the topology [2]. It is of interest to know when these two types of convergence coincide. A number of questions could be posed here, but we shall deal only with the question of when a topological space can be suitably embedded in a complete lattice. To make this statement more precise we shall give the following definition.

DEFINITION. A topological space is said to be an O-space if it is homeomorphic to a subset Ω_0 of a complete lattice Ω and if every net in Ω_0 converges (with respect to the topology for Ω_0) to a limit in Ω_0 if and only if it o-converges to this limit. For example, every completely regular Hausdorff space is an O-space because it is homeomorphic to a subset of the direct product of unit intervals and if this direct product is partially ordered componentwise, then it becomes a complete lattice in which o-convergence is the same as convergence with respect to the product topology. In this paper we prove the following theorem.

THEOREM. A topological space is an O-space if and only if it is a regular Hausdorff space.

PROOF. If X is an O-space, then it is homeomorphic to a subset Ω_0 of a complete lattice Ω , where the topology for Ω_0 has the properties stated in the above definition. Hence, we only need to show that Ω_0 is a regular Hausdorff space. Since limits with respect to σ -convergence are unique, Ω_0 is a Hausdorff space. For each nonempty open subset U of Ω_0 define $f(U) = \sup \{ \sigma \colon \sigma \in U \}$ and $g(U) = \inf \{ \sigma \colon \sigma \in U \}$. Then define $S(U) = \{ \tau \colon \tau \in \Omega_0 \text{ and } g(U) \leq \tau \leq f(U) \}$. Since Ω_0 is an σ -space, σ -space, σ -space. It is clear that σ -space, σ -space,

Now let $\sigma_0 \in \Omega_0$ be any point. We now define the directed set D to be the collection of all pairs (U, σ) , where $U \subset \Omega_0$ is an open neighborhood of σ_0 and $\sigma \in U$. The binary relation < is defined as follows: $(U_1, \sigma_1) < (U_2, \sigma_2)$ iff $U_2 \subset U_1$. We will now construct a net in Ω_0 as

Received by the editors May 28, 1964.

follows: for each $n = (U, \sigma) \in D$ define $\mu_n = \sigma$. It is clear that the net $\{\mu_n \colon n \in D\}$ converges to σ_0 with respect to the topology for Ω_0 , hence, it must also σ -converge to σ_0 . From the definition of σ -convergence we see that $\inf \{f(U) \colon U \in N(\sigma_0)\} = \sigma_0 = \sup \{g(U) \colon U \in N(\sigma_0)\}$, where $N(\sigma_0)$ denotes the collection of all open neighborhoods $U \subset \Omega_0$ of σ_0 .

We will use this latter fact to show by contradiction that Ω_0 is regular. If Ω_0 is not regular then there exists a point $\sigma_0 \in \Omega_0$ and an open neighborhood V_0 ($V_0 \subset \Omega_0$) of σ_0 such that for every open neighborhood U of σ_0 we have $S(U) \cap V_0' \neq \emptyset$. (V_0' denotes the complement of V_0 .) Therefore, for each $U \in N(\sigma_0)$ one may select $h(U) \in S(U) \cap V_0'$. Now $\{h(U): U \in N(\sigma_0)\}$ is a net and since $g(U) \leq h(U) \leq f(U)$ for all $U \in N(\sigma_0)$, this net must σ -converge to σ_0 (recall the results of the previous paragraph). But since $h(U) \in V_0'$ for all $U \in N(\sigma_0)$, this net cannot converge to σ_0 with respect to the topology for Ω_0 . This contradicts the fact that Ω_0 is an O-space; hence, Ω_0 must be regular. This completes the proof that every O-space is a regular Hausdorff space.

Now assume that X is a regular Hausdorff space. We may assume that X contains infinitely many points, otherwise all is trivial. Let $\mathfrak F$ be the collection of all closed subsets of X which contain at least two points. Now define three sets Ω_- , Ω_0 , and Ω_+ as follows: Ω_- and Ω_+ are sets of ordered pairs of the form (-1, E) and (+1, E), respectively, where $E \in \mathfrak F$; Ω_0 is the set of ordered pairs of the form (0, x), where $x \in X$. Then define $\Omega = \Omega_- \cup \Omega_0 \cup \Omega_+$. The set Ω is partially ordered as follows:

$$(-1, E) \leq (-1, F)$$
 iff $F \subset E$,
 $(-1, E) \leq (0, x)$ iff $x \in E$,
 $(-1, E) \leq (+1, F)$ iff $E \cap F \neq \emptyset$,
 $(0, x) \leq (0, y)$ iff $x = y$,
 $(0, x) \leq (+1, E)$ iff $x \in E$,
 $(+1, E) \leq (+1, F)$ iff $E \subset F$.

It is easily shown that \leq is indeed a partial ordering. It is clear that (-1, X) and (+1, X) are the smallest and largest elements, respectively, in Ω .

In general, Ω is not a lattice, but it can be embedded in a complete lattice $\overline{\Omega}$ (the MacNeille completion); see [1, p. 58]. By the embedding, we can regard Ω as a subset of $\overline{\Omega}$. Hence, Ω_0 can be regarded as a subset of $\overline{\Omega}$. We shall topologize Ω_0 so that it is homeomorphic to X; this can be done directly since there is a natural one-to-one correspondence between X and Ω_0 .

We will now show that a net in Ω_0 converges with respect to the topology for Ω_0 if and only if it σ -converges. Let $\{\sigma_n\colon n\in D\}$ be a net in Ω_0 which converges to σ with respect to the topology for Ω_0 . Since Ω_0 is a regular Hausdorff space, the collection $N(\sigma)$ of closed neighborhoods of σ is a base for the neighborhood system at σ . Now if the singleton $\{\sigma\}$ is open, then there exists $k\in D$ such that $\sigma_n=\sigma$ for all n>k; hence, the net σ -converges to σ . On the other hand, if the singleton $\{\sigma\}$ is not open, then (putting $\sigma=(0,x)$) we have $\inf\{(+1,E)\colon E\in N(x)\}=\sup\{(-1,E)\colon E\in N(x)\}=(0,x)=\sigma$, where N(x) is the collection of closed neighborhoods of $x\in X$. Hence, for each $E\in N(x)$ there exists $k\in D$ such that $(-1,E) \le \sigma_n \le (+1,E)$ for all n>k. Therefore, the net σ -converges to σ .

Now let $\{\sigma_n \colon n \in D\}$ be a net in Ω_0 which does not converge to σ with respect to the topology for Ω_0 . Hence, there must exist a set $E \in \mathfrak{F}$ which does not contain x, where $(0, x) = \sigma$, such that $x_n \in E$ cofinally $(\sigma_n = (0, x_n))$. Hence, $\tau_k = \inf \{\sigma_n \colon n > k\} \le (+1, E)$ for all $k \in D$. Therefore, $\sup \{\tau_k \colon k \in D\} \le (+1, E)$ which means that $\sup \{\tau_k \colon k \in D\} \ne \sigma$ (recall the definition of the partial order in Ω and the fact that x does not belong to E). This in turn means that the net does not σ -converge to σ . Q.E.D.

REFERENCES

- 1. G. Birkhoff, *Lattice theory*, rev. ed., Amer. Math. Soc. Colloq. Publ. Vol. 25, Amer. Math. Soc., Providence, R. I., 1948.
- 2. E. E. Floyd, Boolean algebras with pathological order topologies, Pacific J. Math., 5 (1955), 687-689.
 - 3. J. L. Kelley, General topology, Van Nostrand, New York, 1955.

University of Washington