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In a complete lattice it is possible to define a notion of convergence

(for arbitrary nets) known as order convergence (o-convergence) ; for

definitions see [l,p.5°]and [3, p. 65]. As a general rule o-convergence

is not a topological convergence; i.e., the lattice cannot be topologized

so that nets o-converge if and only if they converge with respect to

the topology [2]. It is of interest to know when these two types of

convergence coincide. A number of questions could be posed here, but

we shall deal only with the question of when a topological space can

be suitably embedded in a complete lattice. To make this statement

more precise we shall give the following definition.

Definition. A topological space is said to be an O-space if it is

homeomorphic to a subset ß0 of a complete lattice ß and if every net

in fío converges (with respect to the topology for ß0) to a limit in ß0

if and only if it o-converges to this limit. For example, every com-

pletely regular Hausdorff space is an O-space because it is homeo-

morphic to a subset of the direct product of unit intervals and if this

direct product is partially ordered componentwise, then it becomes a

complete lattice in which o-convergence is the same as convergence

with respect to the product topology. In this paper we prove the

following theorem.

Theorem. A topological space is an O-space if and only if it is a

regular Hausdorff space.

Proof. If X is an O-space, then it is homeomorphic to a subset ß0

of a complete lattice ß, where the topology for ß0 has the properties

stated in the above definition. Hence, we only need to show that ß0

is a regular Hausdorff space. Since limits with respect to o-conver-

gence are unique, ß0 is a Hausdorff space. For each nonempty open

subset 17of ß0 define/(ff) =sup{(r: <rG U} and g(U) =inf {a: <r£- U).

Then define S{U) = {t: rGßo and g(U) grg/(/7)}. Since ß0 is an

O-space, S(U) is closed. It is clear that UC.S(U).

Now let o-oGßo be any point. We now define the directed set D to

be the collection of all pairs ( [/, 0-), where £7Cßo is an open neighbor-

hood of (To and a (EU. The binary relation < is defined as follows:

(Ui, ffi) <(Ui, <r2) iff Uid U\. We will now construct a net in ß0 as
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follows: for each n = (U, a) ED define ixn = <r. It is clear that the net

{/¿„:wG-D} converges to <r0 with respect to the topology for fí0,

hence, it must also o-converge to <r0. From the definition of o-con-

vergence we see that inf {/([/): U G N(<r0)} = <r0 = sup{g(i7):

UEN(a0)}, where N(<Xo) denotes the collection of all open neighbor-

hoods Í/Cfio of (To.

We will use this latter fact to show by contradiction that ñ0 is regu-

lar. If fío is not regular then there exists a point (ToGfío and an open

neighborhood Vo (VoCfío) °f °"o such that for every open neighbor-

hood U of Co we have S(U)r\V0' ?í0. (V¿ denotes the complement

of Vo.) Therefore, for each UEN(<t0) one may select h(U) ES(U) C\ V¿.

Now {h(U) : UEN(<T0)} is a net and since g(U)úh(U) £/(U) for all

i/G-/V(<ro), this net must o-converge to «r0 (recall the results of the

previous paragraph). But since h(U)E Vó for all UEN(ct0), this net

cannot converge to <r0 with respect to the topology for fí0. This contra-

dicts the fact that fí0 is an O-space; hence, fí0 must be regular. This

completes the proof that every O-space is a regular Hausdorff space.

Now assume that X is a regular Hausdorff space. We may assume

that X contains infinitely many points, otherwise all is trivial. Let

ï be the collection of all closed subsets of X which contain at least

two points. Now define three sets fí_, fí0, and fí+ as follows: fí_ and

fl+ are sets of ordered pairs of the form ( — 1, E) and ( +1, E), respec-

tively, where EG5; fío is the set of ordered pairs of the form (0, x),

where xEX. Then define ñ = fí_Wfí0Wfí+. The set fl is partially

ordered as follows:

(-l,E)^(-l,F)

(-\,E) g (0,o;)

(-l,£)g(+l,F)

(0, *) á (0, y)

(0,x) g(+l,£)

(+1, E) £ (+1, F)

ff F CE,

ff xE-E,

ff EC\F^ 0,

ff x = y,

ff xE E,

R EC F.

It is easily shown that ^ is indeed a partial ordering. It is clear that

( —1, X) and ( + 1, X) are the smallest and largest elements, respec-

tively, in fí.

In general, fi is not a lattice, but it can be embedded in a complete

lattice Q (the MacNeille completion); see [l, p. 58]. By the embed-

ding, we can regard fí as a subset of Ö. Hence, fí0 can be regarded as

a subset of Ô. We shall topologize fío so that it is homeomorphic to

X; this can be done directly since there is a natural one-to-one cor-

respondence between X and fí0.
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We will now show that a net in fi0 converges with respect to the

topology for fi0 if and only if it o-converges. Let [an: nÇ^D} be a net

in Öo which converges to a with respect to the topology for ñ0. Since

ño is a regular Hausdorff space, the collection N(a) of closed neigh-

borhoods of o- is a base for the neighborhood system at a. Now if the

singleton {<r} is open, then there exists &££> such that o-n = o~ for all

n> k; hence, the net o-converges to a. On the other hand, if the single-

ton {o-} is not open, then (putting <r = (0, x)) we have inf {( + 1, E):

E<EN(x)} =sup((-l, E):EEN(x)}=(0, x)=ar, where N(x) is the

collection of closed neighborhoods of x(EiX. Hence, for each E£.N(x)

there exists kÇE.D such that ( —1, E) èanû( + l, E) for all n>k.

Therefore, the net o-converges to <r.

Now let {<rn:n<E.D} be a net in fi0 which does not converge to a

with respect to the topology for ñ0- Hence, there must exist a set

EGï which does not contain x, where (0, x) =(r, such that x„£E co-

finally (crn = (0, xn))- Hence, n = inf {cxn: n>k) ^( + 1, E) for all k(^D.

Therefore, sup{r*: kÇzD) á( + l,E) which means that sup {n: kÇzD]

7a a (recall the definition of the partial order in ß and the fact that x

does not belong to E). This in turn means that the net does not o-

converge to a. Q.E.D.
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