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The classical unsolved problem in the coloring of maps is to deter-

mine whether four colors are sufficient to color any map on a sphere.

This problem has stimulated more general investigations such as the

study of chromatic polynomials,2 Pn(\), each of which gives the exact

number of ways in which an associated map of ra regions can be

colored using some or all of X different colors, [l]-[lO]. It is sufficient,

actually, to consider maps having triple vertices, for which P„(0)

= Pn(l) =Pn(2) =0, hence more convenient expressions, such as

F„+3(A)
(1) Qn(\)

X(X - 1)(X - 2)

are often considered in practice. The study of chromatic polynomials

has led to a conjecture of Birkhoff and Lewis which is a strong form

of the four-color conjecture, [5]. They have shown that

(2) (X - 3)" « Qn(X) « (X - 2)",    for   X ̂  5

holds for all maps of triple vertices, and also that

(3) (X - 3)" « <2„(A) « (X - 2)»,    for    X ̂  4,

holds for all such maps for which 0^ra^8. Here the relation between

two polynomials, f(x) and g(x), which is symbolized by

(4) f(x) « g(x),

holds if and only if the coefficients of f(x) are non-negative and not

greater than the corresponding coefficients of g(x), and the relation

between two polynomials, S(y) and T(y), which is symbolized by
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(5) Siy)«Tiy),    for   y è c,

where c is a constant, holds if upon setting x = y —c,/(x) =5(y), and

g(x) = Tiy), the relation (4) holds. Attempts to prove that (3) always

holds for maps of triple vertices have broken down because of the

possibility of the occurrence of maps which are regular in the sense of

Birkhoff, [l]. By calculating the chromatic polynomials involved,

Birkhoff and Lewis have shown that (3) does hold for what are prob-

ably the only maps of fewer than seventeen regions which are regular

in this sense, and for one such map which has seventeen regions. The

results of this calculation, [5], formed the basis for their conjecture

to the effect that (3) always holds for maps of triple vertices. Their

conjecture is actually a very strong form of the four-color conjecture,

for if it were true, then, in particular, it would follow from (3) that

P„+3(4) 2:24. Hence the map Pn+z, associated with the chromatic

polynomial P„+3(X), could be colored in four colors.

The determination of the chromatic polynomials of large maps thus

constitutes a valuable method for extending known results and test-

ing conjectures. It is of particular interest to determine whether the

conjecture of Birkhoff and Lewis holds in the case of the truncated

icosahedron, which is the simplest regular map possessing the addi-

tional topological property that no two of its pentagons are contigu-

ous. It was for this reason that the authors, in consultation with D. C.

Lewis, felt that it would be of interest to determine whether or not

the chromatic polynomial of the truncated icosahedron satisfies the

conjecture mentioned above. It turns out that it does satisfy this con-

jecture.

The truncated icosahedron is obtained from a regular icosahedron

by truncating the icosahedron at each of its twelve vertices. The map

associated with the original icosahedron had twenty regions; the

truncation process yields an additional twelve, so that the map asso-

ciated with the truncated icosahedron has a total of thirty-two re-

gions of which twelve are pentagons and twenty hexagons. When we

speak of the "chromatic polynomial of the truncated icosahedron"

we shall mean, of course, the chromatic polynomial of the map asso-

ciated with the truncated icosahedron.

If a regular map is to be colored using some or all of X different

colors then, to reduce the size of the coefficients, the chromatic poly-

nomial is usually written in powers of m = X —3. It is found that most

maps cannot be colored in 0 or 1 or 2 or 3 colors, so that, for maps

with this property, m(w+1)(w-|-2)(m-|-3) is a factor of the chromatic

polynomial. When a chromatic polynomial, P„(X), is divided by this
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factor, the resulting quotient polynomial will be denoted by Qn(u).

The chromatic polynomial to be presented in this paper is given in

the latter form. Inasmuch as the chromatic polynomial of a map

with n regions is a polynomial of degree n, the chromatic polynomial

which we obtain for the truncated icosahedron should be (after the

division just indicated) of degree twenty-eight. The map for the

truncated icosahedron is shown in Figure 1. The first term and the

Figure 1

coefficients for the remaining terms of the chromatic polynomial for

this map are given as follows:

w28 + 0 + 28 - 54 + 469 - 1,582 + 7,192 - 26,512

+ 97,763 - 333,760 + 1,076,100 - 3,222,960 + 8,888,435

- 22,264,058 + 49,933,474 - 98,731,205 + 169,324,174
(6) - 247,428,839 + 301,855,436 - 299,843,126 + 234,327,105

- 136,166,711 4- 51,805,180 - 6,862,115 - 5,159,939

+ 3,702,618 - 1,143,882 + 181,952 - 11,994.

This paper contains an extremely condensed account of the way in

which the above polynomial was obtained. In his dissertation (Uni-

versity of Maryland, 1953) J. W. Siry worked out a formula having

as one of its special cases a result by means of which the chromatic

polynomial of the truncated icosahedron could be computed if the

chromatic polynomials for thirty-five other maps, each with twenty-

six or fewer regions, were known.
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Hall and Vanderslice have each independently checked the validity

of the formula of Siry. Vanderslice, in her thesis (University of Mary-

land, 1948), described, and found the chromatic polynomials for, 155

maps not given by Birkhoff and Lewis. She had hoped to compute

the chromatic polynomial for the truncated icosahedron, but this

proved to be beyond computation with a desk computer until the

discovery of the Siry formula. All 155 of the polynomials in the

Vanderslice thesis have been computed independently and checked

by Hall.
At this stage of the game, Hall and Vanderslice started a joint pro-

gram to compute the chromatic polynomials for the thirty-five maps

described by Siry, and hence the chromatic polynomial for the trun-

cated icosahedron itself. Working independently, they completed the

program, checking all polynomials. The set of thirty-five maps re-

ferred to above will be denoted by T (26) and the related general set

corresponding to the more general formula will be denoted by S(n — 6).

Reference 8 contains a more detailed description of the relationships

existing between the sets S(n — 6) and T(26), as well as a definition

of symmetric equivalence, a special form of topological equivalence

which is of value in this context.

These sets and the formulas themselves were found by means of a

method which can be sketched as follows. The discussion will be

facilitated considerably if certain conventions are adopted in con-

nection with the following reduction formulas of the type given by

Birkhoff and Lewis:

(7) Qn(u)   =   Qn(u)   -   &,_,(«)  +  Q*n-l(u),

(8) Qn(u) = (u + l)Qn-i(u),

(9) Qn(u) = wÇn_i(ra),

(10) Qn(u) = (u - l)Q»_i(«) + uQn-i(u) + Q*n-2(u),

and

(11)

Qn(u) = (u - 2)qLi(«) + 2(« - 1)<?Li(«)

+ öi_»(«) + 1QI-2Íu).

The latter is a simplified version of their pentagon reduction formula

applicable to any map having a homeomorph which is symmetric

about an axis of symmetry of the pentagon. The left member of a re-

duction formula will be referred to as the antecedent, and each term of
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the right member will be referred to as a consequent. In certain sym-

bols used in the following discussion, the consequents of formulas (7),

(10) and (11) will be denoted, respectively, by the digits 1,2,3, ■ • • ,

8, 9, and 0, and the consequents of formulas (8) and (9) will be de-

noted by a superscript bar and a prime, respectively. Regions of maps

will be denoted by letters, and a side of two regions will be denoted

by the letters associated with these two regions. In the case of

each one of the formulas (7) through (11), the first consequent hav-

ing the subscript n — \ denotes a map obtained from the antecedent

by erasing a side which will be called the principal side. All the

important information associated with the application of an en-

tire formula such as the fundamental principle, (7), to a map such as

the truncated icosahedron of Figure 1 can be given by means of a

symbol of the type

(12) AC123

where the first two letters denote the principal side and the digits

following serve to denote which formula was applied, and the result-

ing consequent maps as well. In the case of formulas (10) and (11)

the first letter will serve also to denote the region being reduced.

When sides are erased to obtain the maps denoted by the symbol 2

or 3, the region label nearest to the beginning of the alphabet is as-

signed to the new region. In formulas (8) through (11), where one

side of a region is erased, the label of the region being reduced is

eliminated. When two sides are erased, the label of the region being

reduced is retained. It is not necessary to specify the principal side in

the case of the formulas (8) and (9), since these reductions possess

symmetry. For simplicity, these reductions can be specified by adding

the superscript bar or prime at the appropriate digit and giving the

letter of the region being reduced following this symbol. For example,

when the formula (12) is applied to the truncated icosahedron shown

in Figure 1, the resulting map denoted by the symbol 3 contains a

3-gon labelled C. We erase one side of C to obtain a map with one

fewer regions, using (9). A prime is placed after the 3, and a C after

the 3' thus obtained so that our symbol (12) becomes

(13) AC123'C.

This symbol conveys a great deal of information. It tells us that we

broke down the truncated icosahedron by applying the fundamental

principle (7) (this is the meaning of the 123' in the formula) to obtain

three new maps, denoted by 1, 2, and 3. The map denoted by 3 con-

tained a 3-gon labelled C, and we erased one side of this 3-gon to ob-

tain the map 3'. Further reductions of the three maps 1, 2, 3' are
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then completely specified by means of the symbols

(14) 1 AG 123" GA,

(15) 2 AG 123' G,

(16) 3' AGI' A 2 3" AEG.

Now (14) tells us how to break down the map 1 into three simpler

maps 11, 12, 13", where 13" was obtained by erasing one side of each

of the 3-gons G and A. We have listed the breakdowns of all the maps

we use in Table I, where each reduction is stopped when we reach

a map in our set T(2tj.

There are many times, during this reduction of the numerous maps

under consideration, when we reach maps that have been encountered

in our other reductions. To prevent duplication of effort, these maps

are listed along with our symbols and an asterisk to warn the reader

what has happened. When a map occurs in our reduction that is in

the set T(26), we show its symbol in bold face type to indicate that

no further reduction is necessary.

After obtaining all 35 of the maps in T(26), and computing and

checking their chromatic polynomials, substitution in the special case

of the formula of Siry given in (18) gives us the chromatic polynomial

of the truncated icosahedron. This portion of the work was done by

Hall and Vanderslice.

To illustrate the meanings of the symbols in Table I, we note that

(16) is there written as

(17) 3' AG 1'* A 2* 3" AEG (13", 23').

This tells us that when we reduce the map 3' by applying (7) to the

side AG, we obtain three maps 3'1, 3'2, 3'3. We erase one side of the

3-gon A in 3'1 to obtain 3'1'. The first asterisk in (17) comes after

the 1'. This informs us that the map 3'1' is chromatically equivalent

to the map 13" (indicated in parentheses) which we reduce elsewhere

in our computation. Similarly, 3'2 is chromatically equivalent to 23'.

Finally, the map 3'3 is reduced by applying (8) and (9) to obtain

3'3", where the boldfacing serves notice that we have reached a

map of the set T(26).

Table I, which includes the symbols (13) through (16), contains

the seven reduction sequences needed to reduce the truncated ico-

sahedron to the maps of T(26). The first of these seven sequences in-

volves the central region of Figure 1. It yields six different configura-

tions which are reduced in the remaining sequences.
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P32(X) = (w6 - 6m5

+ 24m4 - 57«' + 78m2 - 56m + 16)P26(X)(3'3")

(18)
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m4 - 3m3 + 6m2 - 10m + 6)P2e(X)(13"46)

2m5 - 7m4 + 3m3 + 34m2 - 62m + 30)P26(X)(13"64)

2m6 - 12m4 + 36m3 - 44m2 + 18m)P26(X)(228'4)

6m)P26(X)(2205) + (6m2 - 30m + 30)P26(X) (22042)

m4 - 12m2 + 32m - 18)P26(X)(22043)

6m2)P26(X) (11485')

r - m3 - 4m2 + 6m)P26(X)(11405')

3m2 - m)P26(X)(23'25)

- m4 + 6m3 - 15m2 + 19m - 9)P26(X)(23'243)

m6 - 6m4 + 21m3 - 30m2 + 14m)P26(X)(122345)

5m6 - 18m4 + 21m3 - 5m2 - 3m)P25(X) (13"45')

3m3 - 9m2 + 9m - 3)P26(X)(13"56)

3m3 - 6m2 + 3m)P26(X)(13"65)

m6 - 5m5 4- 18m4 - 38m3 + 40m2 - 16m)P26(X)(13"445)

6m3 - 6m2)P26(X)(228'5) + (6m)P26(X)(2206')

2m6 - 6m4 + 28m2 - 24m)P26(X)(220415)

- 6m3 + 6m2)P2b(\) (114845')

- 6m2 + 6m)P26(X)(114846')

- 6m2 + 6m)F26(X)(114864') + (- 6)P26(X) (114866)

2m - 6)P26(X) (114066) + (3m)P26(X)(23'26')

f - 6w4 + 18«3 - 23m2 + 10m)P26(X) (122346')

3m3 - 4m2)P26(X) (122355)

m5 - 4m4 + 6m3)P25(X)(1151155')

m6 - 5m5 + 18m4 - 38m3 + 40m2 - 16m)P24(X)(13"446')

6m3 - 6m2)P24(X)(228'6')

2m5 - 6m4 + 28m2 - 24m)P24(X) (220416')

2m3 - 6m2)P24(X)(114065') + (3m3 - 4m2)P24(X)(122356')

3m6 - 9m5 + 3m4 + 9m3 - 6m2)P23(X)(13"55')

6m3 - 6m2)P23(X)(114865').
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Table I

Reduction Sequences

1. The truncated icosahedron

^C123'C
L4G123"&4
2^G1*23'G(12)
3'^G1'M2*3"^£G(13", 23')

1L4£456'*£(13")
12¿£1*23'*£(114, 13")
2304£1*23"*.4£(13", 3'3")
122B.D1*2'*C3(22, 23'2)

2. The map 13"

C5456
4EB45'D6

5ECi'*D5DL6(13"45')
6£C4 5 6*(13"56)
441*34*5 6'Z,(3'3")

3. The map 22

£/17*8'.D9*0(1223, 23'2)

8'BE 4 5 6' I
0BA4 5 6' I
04AK1 2 3
041A44* 5 6' 0(13"64)

4. The map 23'2
DA4 5 6' L

4AJ12*3(13"64)
4L4M*2*3"M(13"44,13"46,13"45')

5. The map 114

£57*89*0(115, 13")
8G£4 S'F6
0GB 4 5' F6
84F£4* 5' N6' 0(13"5)
86C£ 4'D 5' DL 6
04 CB4*5*6*(2204, 22042, 22043)
06C£4*5'B6 (22042)

6. The map 1223

Byl456'*/(23'25)
4FA4*5 6' 0(13"44)

5.054*5 6'L(122345)
7. The map 115

¿Afl2*3*(1148, 1140)

UJV12*3*(1148, 13")
11CD456
114^F12'*G3*(23'24, 12234)

115GF4*5M6*(22041, 22042)
116DM*2*3'*I>(11404, 11406,

11405')
1141GZ>7*8'*F9*0*(12234, 228'4,

23'24, 2204)

The chromatic polynomial of the truncated icosahedron (6) has

twenty-eight zeros of which exactly four are real. We close this paper

by listing approximations to all of these zeros.8

Approximations to the four real zeros are:

0.24697919,

0.52004593,

0.41539930,

-0.38196601.

Approximations to the real and imaginary parts of the twelve pairs

of conjugate complex zeros are given as follows:

8 These approximations were found on a high speed computer which was very

generously made available to one of the authors by the Glendale Laboratories, Endi-

cott, New York, of the International Business Machines Corporation.
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Real Parts Imaginary Parts

0.63596985 0.030695947
0.70105547 0.30191011
0.88769325 0.48067209
0.54666090 1.9521084
0.83394414 1.0924455
0.86771617 0.77432779

-0.96829388 3.0407459
-0.20846283 2.7749345

0.82430230 1.5035971
-1.8968529 3.0224596
-2.8830096 2.3379808

0.25904794 2.3786634
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