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4. The table on the preceding page lists the value of s(«) for all

«gll3. All entries for sin) were computed individually and checked

by means of Theorem 2.
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ON THE CONTENT OF POLYNOMIALS

FRED KRAKOWSKI

1. Introduction. The content C(/) of a polynomial / with coeffi-

cients in the ring R of integers of some algebraic number field K is

the ideal in R generated by the set of coefficients of/. This notion plays

an important part in the classical theory of algebraic numbers.

Answering a question posed to the author by S. K. Stein, we show in

the present note that content, as a function on R[x] with values in

the set J of ideals of R, is characterized by the following three condi-

tions:

(1) C(/) depends only on the set of coefficients of /;

(2) if / is a constant polynomial, say fix)=a, aER, then C(/)

= (a), where (a) denotes the principal ideal generated by a ;

(3) C(/-g) = C(/)-C(g) (Theorem of Gauss-Kronecker, see [l, p.

105]).

2. Characterization of content. Denote by [f] the set of nonzero

coefficients oí fER[x] and call/, g equivalent, of /~g, if [f] = [g]. A

polynomial is said to be primitive if its coefficients are rational in-

tegers and if the g.c.d. of its coefficients is 1.

Lemma. Let S be a set of polynomials with coefficients in R and sup-

pose it satisfies:

(1) ÍES;
(2) iffESandf~g, then gES;
(3) iff'i&S, then f ES and gES.

Then S contains all primitive polynomials.
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Proof.1 We will call a polynomial / with rational integer coeffi-

cients special, if IG [/] and aEf implies —aEf- If p(x) = XXo c***
is primitive, let q(x) = XX,0 á*x*, where ¿0, di, • ■ • , dn are rational

integers such that XXo cA-* = 1. Then [pq] contains 1 and

pq(x2n+x — 1) is special. By virtue of condition (3) it suffices to show

that every special polynomial is in 5.

Let therefore / be special and let m¡ be the maximum of the ab-

solute values of the coefficients of /. We now proceed by induction

on m¡.

If fK/ = l, then/~x2— x+1 and since (x+l)(x2 — x + 1) = x3 + l<~l

and ÍES, it follows that /G S.

Let now w/= w > 1 and [/]= {l, — l,m, — m,ai, — ai, • • ■ ,an, — an},

\ak\ <m, k = l, • ■ • , n. Consider the polynomial /i(x) = — 1+mx

-mx2+x34-aix6-aix7-|- • • • -fa„x4n+1-a„x4n+3. Clearly/,~/. Mul-

tiplying /i by x+1 we obtain

g(x) = fi(x)(x + 1)

= — 1 + (m — l)x — (m — l)x3 + x4 + aix6 + aix6 — aix1 — aix8

+ • • • + anx4n+1 + anxin+2 - a,txin+3 - anxin+i.

g is special and mg = m — l. Applying the induction hypothesis, we get

gES. Hence fiES by (3) and f ES by (2), which proves the lemma.

Theorem. Let J be the set of ideals in R and h a function on R[x]

with values in J satisfying the conditions :

(1) iff, geR[x] andf~g, then h(f)=h(g);
(2) if f is constant, say f(x) =a, a ER, then h(f) = (a);

(3) h(f-g)=h(f)-h(g).
Then h(f) = C(f) for all fER[x].

Proof. Consider first the case, where 1 £[/"]• We may assume

/ is of the form xn+<zixn-1+ • • • -\-an, atER, i=l, • • • , n. Let

di be a primitive element of the field K and 02, • • • , 6r its conjugates.

Each ai is then a polynomial pi(9i) with rational coefficients. Let

aij = pi(6,), t = l, • • • , n, j = l, ■ • • , r, and consider /3(x)=xn

-f-aijXn-1-r- • • • -\-anj- Since the coefficients of / are integers of K,

the product F(x) =/i/2 • • • fr has rational integer coefficients and

those of f2 • ■ • fT are also in P. Now F is primitive as IG [F]. Since

the set of all polynomials on which h assumes the value (1) satisfies

the conditions of the lemma, we have h(F) = (1) and therefore h(f)
= (1).

Next let C(f) be a principal ideal with generating element a^O.

1 For this proof, I am indebted to E. P. Specker.
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Then f(x)=af'(x), where C(f') = (l). We can find a polynomial

g'(x)ER[x] such that lG[f-g']. Then h(f'g')=h(f')h(g') = (l) and
thus also h(f') = (l). Hence h(f)=h(a)h(J') = (a)(1) = (a) = C(f).

If, finally, C(f) is arbitrary, there is a positive integer k such that

(C(f))k is principal (see [l, p. 121]). Now (C(f))" = C(fk)=h(fk)
= (&(/))* and hence h(f) = C(f), because factorization into prime

ideals is unique in 7?. This proves the theorem.

3. An example. The Gauss-Kronecker theorem applies to more

general rings than just to the rings of integers in a number field. Our

theorem however does not remain true if the elements of 7? are no

longer algebraic over the rationals, as will now be shown by an

example.

Take for 7? the ring of polynomials in one indeterminate y and with

rational coefficients. 7? is a principal ideal ring and clearly the Gauss-

Kronecker theorem holds for the polynomials of 7?[x]. However, if

fER[x], say f(x) = E"=o <M»*''> <Mj)G7?, let w(y)=g.c.d. (a0(y),
• ' ' i an(y)) ancl let d be the degree of f/m with respect to y. Take a

fixed but arbitrary nonzero element rER and define:

h(f) = (m-r<),   if/5= 0,

h(0) = 0.

The function h thus defined satisfies the assumptions of the theorem,

but clearly h(f) ^ C(f), if / is not a constant polynomial.
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