810 FRED KRAKOWSKI [August

4. The table on the preceding page lists the value of s(n) for all
n =113. All entries for s(n) were computed individually and checked
by means of Theorem 2.
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Un1versiTY oF NEw MEXICO

ON THE CONTENT OF POLYNOMIALS
FRED KRAKOWSKI

1. Introduction. The content C(f) of a polynomial f with coeffi-
cients in the ring R of integers of some algebraic number field K is
the ideal in R generated by the set of coefficients of f. This notion plays
an important part in the classical theory of algebraic numbers.
Answering a question posed to the author by S. K. Stein, we show in
the present note that content, as a function on R[x] with values in
the set J of ideals of R, is characterized by the following three condi-
tions:

(1) C(f) depends only on the set of coefficients of f;

(2) if f is a constant polynomial, say f(x) =@, a ER, then C(f)
=(a), where (e) denotes the principal ideal generated by a;

3) C(f-g)=C(f)-C(g) (Theorem of Gauss-Kronecker, see [1, p.
105)).

2. Characterization of content. Denote by [f] the set of nonzero
coefficients of fER[x] and call f, g equivalent, of f~g, if [f]=[¢g]. A
polynomial is said to be primitive if its coefficients are rational in-
tegers and if the g.c.d. of its coefficients is 1.

LEMMA. Let S be a set of polynomials with coefficients in R and sup-
pose it satisfies:

1 1eS;

(2) if fES and f~g, then gES;

3) if f-gES, then fES and gES.
Then S contains all primitive polynomials.
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Proor.! We will call a polynomial f with rational integer coeffi-
cients special, if 1€ [f] and a €f implies —aEf. If p(x) = D2, cixt
is primitive, let g(x) = 22_0 dix*, where dy, dy, - - -, d, are rational
integers such that D » o cd,x = 1. Then [pg] contains 1 and
pg(x2»+1—1) is special. By virtue of condition (3) it suffices to show
that every special polynomial is in S.

Let therefore f be special and let m; be the maximum of the ab-
solute values of the coefficients of f. We now proceed by induction
on m;.

If m;=1, then f~x?—x+1 and since (x+1)(x2—x+1) =x+1~1
and 1€ S, it follows that fE.S.

Letnowm,;=m>1and [f]= {1, — 1,m, —m,a1, —ay, - - -,@, —a,},
Iak| <m, k=1, - - -, n. Consider the polynomial fi(x)=—1+mx
—mx?+xtax’ —ax’+ - - - Fauxtttl—axtt8 Clearly fi~f. Mul-

tiplying f; by x+1 we obtain

g@) = H(»)(x + 1)
=—14m—Dx— (m— 1)a®+ x* + a12% + a12° — 127 — g128

+ . e _I. a,,x"‘“ + anx4n+2 —_ a,,x4"+3 - a,.x""“.

g is special and m,=m —1. Applying the induction hypothesis, we get
g€ S. Hence 1€ S by (3) and fE.S by (2), which proves the lemma.

THEOREM. Let J be the set of ideals in R and h a function on R[x]
with values in J satisfying the conditions:

(1) if f, gER[x] and f~g, then h(f) =h(g);

(2) of f is constant, say f(x) =a, aER, then h(f) =(a);

(3) &(f-g)=R(f)-h(g).
Then h(f) =C(f) for all fER[x].

Proor. Consider first the case, where 1€ [f]. We may assume
f is of the form x*+ax*'4 - - . +a,, a;ER, t=1,---, n. Let
61 be a primitive element of the field K and 6,, - - -, 0, its conjugates.
Each a; is then a polynomial p;(0;) with rational coefficients. Let
a;j=p:0;), 1=1,---, m, j=1,--., r, and consider f;(x)=x"
+a1%" 1+ - - - 4a,;. Since the coefficients of f are integers of K,
the product F(x)=fif: - - - f has rational integer coefficients and
those of f; - - - f, are also in R. Now F is primitive as 1E [F]. Since
the set of all polynomials on which % assumes the value (1) satisfies
the conditions of the lemma, we have £(F)=(1) and therefore h(f)
=(1).

Next let C(f) be a principal ideal with generating element a 0.

1 For this proof, I am indebted to E. P. Specker.
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Then f(x)=af'(x), where C(f’)=(1). We can find a polynomial
g’ (x) ER[x] such that 1€ [f'-g’]. Then k(f'g") =h(f)h(g') =(1) and
thus also k(f") =(1). Hence k(f) =h(a)h(f") = (a)(1) =(a) = C().

If, finally, C(f) is arbitrary, there is a positive integer &k such that
(C(f))* is principal (see [1, p. 121]). Now (C(f))*=C(f*) =h(f*)
= (h(f))* and hence i(f)=C(f), because factorization into prime
ideals is unique in R. This proves the theorem.

3. An example. The Gauss-Kronecker theorem applies to more
general rings than just to the rings of integers in a number field. Our
theorem however does not remain true if the elements of R are no
longer algebraic over the rationals, as will now be shown by an
example.

Take for R the ring of polynomials in one indeterminate y and with
rational coefficients. R is a principal ideal ring and clearly the Gauss-
Kronecker theorem holds for the polynomials of R[x]. However, if
fERI[x], say f(x)= 210 a;(9)x%, a;(y) ER, let m(y)=g.c.d. (a(),
++ + ,a,(y)) and let d be the degree of f/m with respect to y. Take a
fixed but arbitrary nonzero element r &R and define:

h(f) = (m"d)) lff # 07

1(0) = 0.
The function % thus defined satisfies the assumptions of the theorem,
but clearly &(f) #= C(f), if f is not a constant polynomial.
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