
AN EXACT SEQUENCE IN GALOIS COHOMOLOGY

DOCK SANG RIM1

Let A be an integrally closed noetherian domain with the quotient

field P. The group of divisors of A is the free abelian group generated

by nonzero minimal prime ideals of A and is denoted by DiA). This

is canonically isomorphic to the group gotten from the set of all re-

flexive A -ideals (including fractional ideals) under the rule a-b

= (a-f))** where c*= {aEF\acEA } =Hom¿(c, ^4). The divisor class

group of A denoted by CiA) is the factor group of DiA) by the prin-

cipal divisors, i.e. it is defined by the exact sequence2

D
0 -► U(F)/U(A) -» DiA) -* CiA) -* 0

where P(a) = ^,pvfia)p with ($Ap)'»w = aAt. We observe that A is

a unique factorization domain if and only if CiA) =0, i.e. if and only

if UiF)/U(A)-+DiA) is an isomorphism.

Now let S^)R be an integral extension of an integrally closed

noetherian domain, whose quotient field LZ)K is a separable exten-

sion of finite degree. Then we obtain the canonical map i: P(P)—>P(5)

given by ]£» vfp—»2t> ^(2^1» eC$)^P) where e(^5) is the ramification

index of $ in SZ)R, i.e. p^S^j = (<i5»S'sri)e<ip)- Since the map i sends the

principal divisors to principal divisors, it induces the map i: C(P)

-+CÍS). We denote the kernel of i by C(S/R). Thus CiS/R) is the sub-

group of CiR) consisting of those divisor classes which become prin-

cipal under the extension SZ)R- Now let the quotient field extension

LDX be Galois with the Galois group G. As customary we denote

PP(G, P(P)), H"iG, UiS)) by 77"(P/P), H»(S/R) respectively. The
main purpose of this short note is to prove:

Theorem. Let SZ)R be an integral extension of an integrally closed

noetherian domain whose quotient field extension LZ)K is Galois with

the Galois group G. Then we have the exact sequence

0 -> CiS/R) -» H^S/R) -► DiS)G/iDiR) ~* CiS)°/iCiR) -»

-»• H2iS/R) -» Í1 H2iS>/Rp) -* miG, C(S)) -* H3ÇS/R)
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' For any commutative ring A, we denote by Z7(4) the group of invertible ele-

ments in A.
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where Dp H2(S9/R9) =fl9 lm(H2(S>/R9)->H2(L/K)),)) running through

all nonzero minimal primes of R.

Remark. A somewhat similar exact sequence related to the Brauer

groups in the case when S~Z)R is unramified was obtained in [2], [3].

Proof. Firstly we observe that HX(G, D(S))—0. Indeed, if we fix,

for each nonzero minimal prime p in R, a nonzero minimal prime 93

in S lying above p, and if we denote by Gp the decomposition sub-

group of 93over p, then D(S)~^29 Z[GP] ®z\a\Zas G-modules, where

p runs through all nonzero minimal primes of R. Consequently

H*(G, D(S)) = £» 77*(G», Z) and in particular we have HX(G, D(S))

= 0. Now for each minimal prime p in R, S9 is a unique factorization

domain and hence 0—*U(S¿)—>U(L)—>D(Sp)—>0 is an exact sequence

of G-modules. Therefore 0^rH\SJRi)-^H2(L/K)^H2(G, D(SV)) is
exact and hence we obtain the exact sequence

(1) 0 -* D H2(Sf/Rv) -» 772(Z/70 -► 772(G, D(S)).

The exact sequence of G-modules 0^U(L)/U(S)->D(S)^>C(S)-+0

together with Hl(G, D(S)) =0 gives us the exact sequences

(2) 0^(U(L)/U(S))°-+D(S)G-+C(S)°^Hx(G, U(L)/U(S))-*0,

(3) 0 -+ HX(G, C(S)) -+ H2(G, U(L)/U(S)) -+ Z72(G, D(S)).

In turn the exact commutative diagram

0 -*   U(K)/U(R)   -► D(R) -> C(R) -► 0

■L -i- >L

0 -+ (U(L)/U(S))° -+ D(S)° -* C(S)° -> HX(G, U(L)/U(S)) -* 0

yields the exact sequence

0 -* C(S/R) -> (U(L)/U(S))°/(U(K)/U(R)) -* D(S)°/iD(R)
(4)

-» C(S)a/iC(R) -» HX(G, U(L)/U(S)) -+ 0.

On the other hand, the exact sequence 0-*U(S)^>U(L)->U(L)/U(S)

—>0 together with Hilbert's Theorem 90 gives us the exact sequences

(5) 0 -> U(R) -+ U(K) -> (U(L)/D(S))° -> HX(S/R) -* 0,

0 -» HX(G, U(L)/U(S)) -+ H2(S/R) ^ 772(7/70

-* H2(G, U(L)/U(S)) -> H>(S/R) -» • • ■ .

Now the exact commutative diagram
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0->Hl(G, U(L)/U(S))->

E2(S/R) -> H2(L/K) -► H2(G, U(L)/U(S)) -> H3(S/R)

0 -♦ 772(G, D(S))->H2(G, D(S))-—> 0

together with (1) and (3) yields the exact sequence

0 -» 77HG, U(L)/U(S)) -> H2(S/R) -► Í1 H2(SV/R9)

(7)
-► H\G, C(S)) -► H*(S/R).

On the other hand, (4) and (5) gives us

0 -+ C(S/R) -* Hl(S/R) -* D(S)°/iD(R) -+ C(S)a/iC(R)

(8) -* W(G, U(L)/U(S)) -> 0.

Connecting (7) and (8) we obtain the desired exact sequence.

When SDR is unramified, we can relate the 2-dimensional cohom-

ology group with the Brauer group. We denote by 73(5/7?) the kernel

of the canonical map 73(7?)—>73(S), where B ( ) denotes the Brauer

group. Then H2(S/R)=B(S/R) if SDR is unramified and 7? is a local

domain [l] and thus we obtain:

Corollary 1. Let SDR be unramified. Then we have the exact

sequence

0 -> 771(5/7c) -» C(R) -* C(S)° -» H2(S/R) -► f) B(Sp/Rf)

-* Hl(G, C(S)) -► H3(S/R).

Proof. If SDR is unramified, then D(S) a = iD(R) and Pip H2(Sf/Rf)

= ()>B(S»/R9).
If we further assume 7? to be regular, our exact sequence coincides

with the exact sequence in [2], [3].

Corollary 2. Let SDR be unramified. If R is regular, we have the

exact sequence

0 -> Hl(S/R) -► C(R) -> C(S)a -* H2(S/R) -► B(S/R)

-^Hl(G,C(S))-*H3(S/R).

Proof. We must show that Dp 73(Sp/7?p) = 73(5/7?). Since one side

inclusion is clear [l], it suffices to show that Dp 73 (Sp/7?p)C 73(5/7?),

i.e. Ker(H2(L/K)^H2(G, D(S)) CB(S/R). Now S, being unramified
over a regular domain 7?, is also regular and hence is a local unique

factorization domain. Consequently D(S) is nothing but the group of



840 D. S. RIM

invertible S-ideals. Let aGKer(P2(P/P)^772(G, D(S))), and let

{a,,T\ be a 2-cocycle representing a. This means that there exists a

set {Aa\ of invertible 5-ideals indexed by G such that a„,TAaA"TA~x

= S, i.e. aa,TAcA"T = A„T. (We may assume that Ai = S.) Now let T be

the central simple P-algebra associated with the 2-cocycle {a„,T},

i.e. T = 2» 7.M, (direct sum) with the multiplication rule: (x„«„)(xTMr)

= x,x"Tac,TuCT. Then A = 2» ^A which is a subset of T is stable under

the multiplication since A,u,ATUr = AaA"a„,Tu,rr=A„u„. Thus A is an

order over R in T, and is projective as an P-module. Now consider

the canonical map S®r A—»Hom^A, A) given by (s®X)(x) —sxX-

Since aEK.eriH2iL/K)-+H2iG, D(S)) = 0» H2iSp/Rp), it follows that
5Ç ®Ap—>Homsp(A5, Ap) is an isomorphism for all non-zero minimal

primes p in R. Consequently the canonical map S®r A—*Homs(A, A)

is an isomorphism since both sides are P-projective modules of the

same rank. Therefore A is an P-separable order in 2 with S as a split-

ting ring, and this completes our proof.
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