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The purpose of the present note is to construct a nonatomic mea-

sure space of finite measure (S, S, p) and an automorphism T such

that, for any given ooEF, the equation

(1) f(Ts) = w(i) •/(*),    for all 5 G S,

has a solution /G F, where F is the class of complex-valued S-mea-

surable functions of absolute value 1. The question whether such an

example exists was raised by Halmos [l, p. 97]. The construction

yields a nonseparable measure space which with more care can be

made to be just nonseparable. The problem remains open for sepa-

rable measure spaces. It seems likely to us that no examples exist in

the separable case.

Let (I, Ú5, I) be the measure space obtained by setting 1= {x|0

six< 1}, 63 the Borel sets of /, and / the Lebesgue measure. We con-

sider identical copies of this measure space, which are denoted by

(Ij, (Bj, lj), JET. The index set T will be specified later. Let (S, S, p)

be defined by

(2) (S, 2, ß) = II (//, <*i, h)-

We recall that S is the Cartesian product space H,er ^i an<^ nence

the elements of S are functions s: T—»I. The value of 5 at jEV will be

denoted by s(j) and referred to as the jth coordinate of s. We recall

also that <r-field S is generated by the class g of subsets G of S which

have the form

(3) g = n B,
lev

where BjE($>i lor all JET and Bjt^Ij for only finitely many j's, and

that the measure p is uniquely defined by setting

(4) p(G) = J! h(Bi)

for G in g.

We let the index set T be the initial segment {j|láj</} of

ordinal numbers, ordered in the usual order, with upper limit / de-

fined as follows. For any set M, let p(M) be its cardinal number. If

k is an ordinal number, let p(k) =p({j\ 1 ájá&})- We then let

J = inl{k\p(k)>c} with c = p(T).
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Finally let R be the class of all 2-measurable functions r: S—*I.

Lemma 1. A function rER can depend at most on a countable number

of coordinates of s. For every rER, there exists an ordinal number jr < J,

such that r does not depend on the coordinates s(k) for jr<k< J.

Proof. The first part of the lemma follows at once from [2,

§38(2)]. The second part follows trivially on setting /r = sup„ kn

where kn, n = l, 2, 3, ■ ■ • , are the coordinates on which r depends.

That jr< J follows since p(kn) úc.

Theorem 1. There exists a one-to-one mapping H of Y onto R such

that, for any jEY, the function rj = H(j) does not depend on coordinates

s(k) for j^k<J.

Proof. Let R[, 0^j<J, be the subclass of R, consisting of func-

tions which do not depend on s(k) for j<k<J. Define

(5) Rj = Rj - (   U   R¿ ) ,    0 £ j < J.
\0s*O      /

By Lemma 1 and by this definition we have

(6) R =     U   Rj =   U    Rj.
0S3<J Osj<J

The set P0 consists of the constant functions r: S—*I. For l^j<J,

Rj contains those functions of Rj which depend on s(j). Hence we

have p(Rj) ^c, O^j<J. We now show that

(7) p(Rj) = c,    0£j<J.

For j = 0 this assertion is obvious. To consider the other values of j,

let

(8) (Sj, Sy, ßj) =    II   (h, <&„, h),    lúj < j-

Then Rj can be considered as the class of all 2y-measurable functions

r: Sj—*I. Let g3- be the generating class of 2y as in (3). Since p((ñ) =c,

it is easy to see that />(9y) =c. and thus also that ¿>(2y) =c. It follows

therefore that p(Rj) =c, and thus (7) holds.

Now well-order every Rk, and note that this induces a lexicographic

well-ordering of P = Uosä:</ Rh- We denote this well-ordering by sub-

indexing the elements of R, i.e., by {n, r2, • • ■ ,r¡, ■ • • }. More pre-

cisely, if n = rk'u and r,< =f*''*', then jSj' if and only if either

(a) k < k', or

(b) k = k' and u^u',
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where rk-u is the «th element of Rk (and similarly for r*''u'). This well-

ordering of R corresponds to the ordinal number /, i.e., R= {r,| 1 ̂ j

</}. In fact, it is clear that piR)>c, but p(Uos*Sfc0 Rk) =c for any

ka < J. Hence Hij) = r¡ establishes a one-to-one mapping II of Y onto

R. To complete the proof of the theorem it is sufficient to show that,

if rj = rk,u, then j>k. This follows, however, directly from the defini-

tions.

Theorem 2. Let the transformation T: S-+S be defined by

(9) iTs)ij) = [sij) + nis)} mod 1,    for all/ ET, s ES,

where r¡ = Hij) as in Theorem 1. Then T is ^-measurable and ß-measure

preserving, and for any coG F the equation fiTs) =u>is)fis) has a solution

fEF.

In order to prove this theorem we first note a few simple lemmas.

Lemma 2. Let (PF, X) be a measurable space and let f: W-+I be a

X-measurable function. Then, for any KEX, the set

{(w, x)| wE K, 0 ^ x g/(w)}

is £-measurable in the product measure space

(F, £) = (IF, X) X (I, <B).

Proof. See [2, §34(5)].

Lemma 3. Peí (IF, X, a) and iZ, 91, 7) be two finite measure spaces

and let Q: W—*Z be a transformation. Let 'S) be a generating class for

the a-field 91, such that the class 8 of finite unions of disjoint sets from

2D is afield. If Q~lDEX and aiQ~lD) =y(D) for all PG£>, then Q is
X —"Si-measurable and a—y-measure preserving.

Proof. Consider the set

911 = \M\ M E 91, QrlM E X, aiQrlM) = y(M)).

It can be seen that 3TC is a monotone class and contains the field 8.

Therefore 9TC also contains the cr-field 91 generated by 8.

Lemma 4. Consider a finite measure space (IF, X, a) and let the trans-

formation P: W-+W be X-measurable and a-measure preserving and let

f: W—*Ibea X-measurable function. Then the transformation Q: iWXI)

-*{WXI) defined by

Qiw, x) = iPw, [x +/(w)] mod 1)

is £-measurable and ß-measure preserving in the product measure space
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(Y,£,ß) =  (W,X,a) X (I, (B, /)•

Proof. Let 2D be the class of sets D of the form

D = K X B

where KE& and B= {x\a^x<b\, O^a^b^l is an interval of I.

By virtue of Lemma 3 it is sufficient to prove that DE%> implies

C2-1/JG£ and ß(Q~lD) =ß(D). But

Q-^K X B) = {(w, x) | w E P~lK, a è [x + f(w)j mod 1 < b}

and, applying Lemma 2, we obtain that Q~l(KXB) is JS-measurable.

Furthermore

ß(Q~1(K X B)) =   f dß=   f     a(dw)   f I (dx)

= (b- a)   f      a(dw) = (b - a)a(P~lK)

= (b - a)a(K) = a(K)l(B) = ß(K XB).

Proof of theorem 2. Let

(10) (S'\ 2', mO =   II   (/*, ®*, «■
lS*<J

The transformation T induces a set of transformations T': Si—*Si

such that

(11) (T's')(k) = [s'(k) + rk(s')] mod 1, s' E S', and 1 g £ < j.

Note that we have made an obvious identification of the function

rk: S—+I with a function Sf—>I, as we may, since rk does not depend,

for l^k^j, on the coordinates s(u), lor k^u<J.

To any subset Mk of Sk associate a subset M** of S, by

M** = Mk X n /*
k-S,k'<3 J

Then, for any GGg there exists a j<J and a set G> which belongs to

the generating class gJ' of S1, such that G = G'*. Therefore we can write

(12) g=   u   gí*

where

9'*= {G'*|G'Gg!}.

To prove that T is S-measurable and ^-measure preserving, it. is
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sufficient to show that GEQ implies

(13) P-'G G 2    and   vi^G) = ß(G).

To this end we apply a transfinite induction argument, consider-

ing relation (12). It is easy to see that the assertion is true for the

sets of g2*. Now assume that (13) holds for the sets of 9'*, 2^j<ja,

and consider the class gi0*. We separate two cases:

(a) The ordinal number/0 has the immediate predecessor k, i.e.,

jo = k + l. In this case, by virtue of Lemma 3, the induction hypothe-

sis is equivalent to the assumption that Tk is a S'-measurable and

jLt*-measure-preserving transformation. Since

Sh = 5* X /* = {isk, xk) | sk E Sk, xk G /*}

and

Thsh = 7%(s*, xk) = iTksk, [xk + rkisk)] mod 1),

Lemma 4 shows that T'o is S'o-measurable and ju'o-measure preserv-

ing. Hence assertion (13) holds also for the sets of gi0*.

(b) The ordinal number j0 has no immediate predecessor. In this

case we can see that

Si0*=   U   8'*.
lsK/o

We have defined then a nonatomic, finite measure space (5, 2, ß)

and a S-measurable, /¿-measure-preserving transformation P (or

automorphism): S—>S. To see that the equation (1) has a solution

fEF for any given coGP, note that there is a unique rER such that

co(s) =eirirM. Let r = r¡. Then/(s) =e2Tisif) is a solution of (1).
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