GENERALIZED EIGENVALUES OF AUTOMORPHISMS
M. A. AKCOGLU AND R. V. CHACON

The purpose of the present note is to construct a nonatomic mea-
sure space of finite measure (S, Z, p) and an automorphism T such
that, for any given w& F, the equation

1) f(Ts) = w(s)-f(s), foralls €S,

has a solution fE F, where F is the class of complex-valued Z-mea-
surable functions of absolute value 1. The question whether such an
example exists was raised by Halmos [1, p. 97]. The construction
yields a nonseparable measure space which with more care can be
made to be just nonseparable. The problem remains open for sepa-
rable measure spaces. It seems likely to us that no examples exist in
the separable case.

Let (I, ®, ) be the measure space obtained by setting I= {x]O
<x<1 } , ® the Borel sets of I, and I the Lebesgue measure. We con-
sider identical copies of this measure space, which are denoted by
(I;, ®;, 1;), JET. The index set I" will be specified later. Let (S, Z, u)
be defined by

(2) S, 2, u) = I1 Ui, &5 1)

JjET
We recall that S is the Cartesian product space ]]jer I; and hence
the elements of .S are functions s: I'—1. The value of s at j&ET" will be
denoted by s(j) and referred to as the jth coordinate of s. We recall

also that o-field 2 is generated by the class G of subsets G of .S which
have the form

©) G=1II5
JjET
where B;E®; for all jET and B;>1I; for only finitely many j's, and
that the measure u is uniquely defined by setting
€)] w(G) = IT 1:(B))
JET
for Gin G.

We let the index set T' be the initial segment { jl1<i<J} of
ordinal numbers, ordered in the usual order, with upper limit J de-
fined as follows. For any set M, let p(M) be its cardinal number. If
k is an ordinal number, let p(k) =p({j| 1 §j§k}). We then let
J=inf{k|p(k)>c} with c=p(I).
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Finally let R be the class of all Z-measurable functions r: S—1I.

LeMMA 1. 4 function r E R can depend at most on a countable number
of coordinates of s. For every rE R, there exists an ordinal number j, <J,
such that r does not depend on the coordinates s(k) for j, <k <J.

Proor. The first part of the lemma follows at once from [2,
§38(2)]. The second part follows trivially on setting j,=sup, kx
where k,, n=1, 2, 3, - - -, are the coordinates on which r depends.
That j, <J follows since p(k.) =c.

THEOREM 1. There exists a one-to-one mapping H of I' onto R such
that, for any jET, the funciion r;= H(j) does not depend on coordinates
s(k) for jSk<J.

Proor. Let R}, 0=j<J, be the subclass of R, consisting of func-
tions which do not depend on s(k) for j <k<J. Define

() Rj=R,’—(U R,:>, 0<j<J.

0sk<y
By Lemma 1 and by this definition we have
6) R= U R/=U R,

0sj<J 055<J
The set R, consists of the constant functions r: S—I. For 1 5j<J,

R; contains those functions of R/ which depend on s(j). Hence we
have p(R;)=¢, 0<j<J. We now show that

M p(R) =¢, 0=j<J.

For j=0 this assertion is obvious. To consider the other values of j,
let

® Si Ziw) = II T &, W), 1=5<J.

1sksj
Then R/ can be considered as the class of all Z;-measurable functions
r: S;—I. Let G; be the generating class of Z; as in (3). Since p(®) =¢,
it is easy to see that p(G;) =¢, and thus also that p(Z;) =c. It follows
therefore that p(R/) =c, and thus (7) holds.

Now well-order every R;, and note that this induces a lexicographic
well-ordering of R=Uqgr<s Rr. We denote this well-ordering by sub-
indexing the elements of R, i.e., by {r;, Poy * 0y Tgy t o e } More pre-
cisely, if r;=7%* and r; =7*"-*, then j<j if and only if either

(a) k<®, or

(b) k=k and u=4',
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where r** is the uth element of R; (and similarly for r¥":+"), This well-
ordering of R corresponds to the ordinal number J, i.e., R= {r,-l 155
<J}. In fact, it is clear that p(R) >c¢, but p(Uosksk, Ri) =c for any
ko< J. Hence H(j) =r; establishes a one-to-one mapping H of I' onto
R. To complete the proof of the theorem it is sufficient to show that,
if r;=r%%, then j> k. This follows, however, directly from the defini-
tions.

THEOREM 2. Let the transformation T: S—S be defined by
) (Ts)(§) = [s(G) + ri(s)] mod 1, forallj ET,sE S,

where r;=H(j) as in Theorem 1. Then T is Z-measurable and u-measure
preserving, and for any w & F the equation f(T's) =w(s)f(s) kas a solution
fEF.

In order to prove this theorem we first note a few simple lemmas.

LeEMMA 2. Let (W, X) be a measurable space and let f: W—I be a
K-measurable function. Then, for any KE K, the set

{@x)|vEK052= )}
is £-measurable in the product measure space
(V,8) =W, x) X U, ®).
PRroOF. See [2, §34(5)].

LEMMA 3. Let (W, &, @) and (Z, 9N, ) be two finite measure spaces
and let Q: W—Z be a transformation. Let D be a generating class for
the o-field N, such that the class & of finite unions of disjoint sets from
D is a field. If Q' DE K and a(Q~'D) =v(D) for all DED, then Q is
K — SN-measurable and o—y-measure preserving.

Proor. Consider the set
M= {M|ME N QM E X, «(Q'M) = v(M)}.

It can be seen that 91 is a monotone class and contains the field &.
Therefore 91 also contains the o-field 9t generated by &.

LEMMA 4. Consider a finite measure space (W, X, o) and let the trans-
formation P: W—W be X-measurable and c-measure preserving and let
f: W—I be a X-measurable function. Then the transformation Q: (W XI)
—(WXI) defined by

Q(w, 2) = (Pw, [x + f(w)] mod 1)

is £-measurable and B-measure preserving in the product measure space
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(Y: £, :3) = (IV) X, a) X (I) ®, l)
Proor. Let D be the class of sets D of the form
D=KXB

where KEX and B= {x|a<x<b}, 0Sa<b<1 is an interval of I.
By virtue of Lemma 3 it is sufficient to prove that DED implies
Q-'De £ and B(Q~'D) =B(D). But

QYK X B) = {(w,2)| w € P'K, a < [x + f(»)] mod 1 < b}

and, applying Lemma 2, we obtain that Q—'(K X B) is £-measurable.
Furthermore

sekxm= [ a= [ @ ! (d)
Q—1(KxB) P-lg as [z+f (w) Imod 1<b

= (b — a) p—lxa(dW) = (b - a)a(P'K)

= (b — a)a(K) = a(K)I(B) = B(K X B).
PROOF OF THEOREM 2. Let
(10) 7, 2, ul) = I1 e, B, b).

1sk<j

The transformation T induces a set of transformations T7: Si—S7
such that

(11) (Tis?)(k) = [si(k) + r(s)] mod 1, si € S7,and 1 £ k < j.

Note that we have made an obvious identification of the function
ri: S—I with a function S’—1I, as we may, since 7, does not depend,
for 1=<k=j, on the coordinates s(u), for k=Su<J.

To any subset M* of S* associate a subset M** of S, by

Mk:=MkX|i H Ik’]'
ksk'<J

Then, for any GEG there exists a j <J and a set G/ which belongs to
the generating class G7 of Z7, such that G=G". Therefore we can write

(12) g= U g~

255<J
where
g ={cr|c e gl

To prove that T is Z-measurable and pu-measure preserving, it is
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sufficient to show that GEG implies
(13) T'GE 2 and u(T'G) = u(G).

To this end we apply a transfinite induction argument, consider-
ing relation (12). It is easy to see that the assertion is true for the
sets of G2*. Now assume that (13) holds for the sets of G, 2 <7 <j,
and consider the class G/%*. We separate two cases:

(a) The ordinal number j, has the immediate predecessor &, i.e.,
jo=Ek++1. In this case, by virtue of Lemma 3, the induction hypothe-
sis is equivalent to the assumption that T* is a Z*-measurable and
uk-measure-preserving transformation. Since

Sio = Sk X I = {(s%, w) | st € S¥, 1 € I}
and
Tisio = Tio(sk, a) = (T*s, [a + r:(s¥)] mod 1),

Lemma 4 shows that T% is Z%-measurable and p%-measure preserv-
ing. Hence assertion (13) holds also for the sets of gio*.

(b) The ordinal number j, has no immediate predecessor. In this
case we can see that

97’0‘ = U 91"'
155<id0

We have defined then a nonatomic, finite measure space (S, Z, u)
and a Z-measurable, u-measure-preserving transformation T° (or
automorphism): S—S. To see that the equation (1) has a solution
fEF for any given wE F, note that there is a unique &R such that
w(s) =e2mir® Let r=r; Then f(s) =e?**® is a solution of (1).
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