
A HYPERGEOMETRIC MEAN VALUE1

B. C. CARLSON

1. Introduction. The mean of order t of the positive values (x)

= (xi, • • • , x») with positive weights (w) = (wu • • • , wn), ^Wi = \,

is defined [3], [l] by

/ A       A1"
Mt(x, W)   =  (    X) WiXi )       ) t  y¿  0,

(1.1) V "        ' «
M0(x, w) m lim Mt(x, w) = H *<*.

1-0 <_1

Homogeneity in (x) distinguishes the means Mt from all other means

of the form <p~l { ̂ ,wt<p(xi)}, where <p is an arbitrary function subject

to appropriate conditions [3, Theorem 84].

In this paper we shall generalize Mt without losing homogeneity.

The starting point is the hypergeometric function R(a; bu ■ ■ ■ , bn;

xi, • • ■ , x„), a modified form [2] of Lauricella's function Fd with the

property of being homogeneous of degree—a in (x). If a is real and if

the parameters (b) and variables (x) are all positive, then R is posi-

tive. For any real t and positive c, we define the "hypergeometric

mean value"

M(l, c; x, w) = [R(-t; cwu ■ ■ ■ , cwn; xh ■ • ■ , xn)]llt,       t ^ 0,

M(0, c; x, w) = lim M(t, c; x, w).
l->0

The hypergeometric mean is homogeneous in (x), and we shall show

(Theorem 1) that it includes Mt as a limiting case:

(1.3) M(t, 0; x, w) = lim M (t, c; x, w) = Mt(x, w).
C-M)

Aside from a few changes, most of the properties of Mt still hold for

M(t, c) with c>0.

We shall rely heavily on an integral representation of the R func-

tion which exists only for c>0. However, (1.2) defines M(t, c) also
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for c<0 provided the P function is well-defined and positive. The

last restriction is probably a severe one but admits some interesting

cases, particularly the elementary symmetric functions. It does not

seem to have been observed previously that both these and the com-

plete symmetric functions are of hypergeometric type:

Et(x) = (  JP(-/;-l, • • • , -l;xi, • • • ,x„)

(/ = 1, 2, • • • , «),
(1.4)

(n + t - 1\
Ctix) = l        t        \Ri-t;\,---,\;xi,---,xn)

(I = 1, 2, • • • ).

Et and Ct are known to satisfy a number of inequalities [l], [3], and

several of these have been extended by Whiteley [4], [5] to a more

general class of symmetric forms which are still R polynomials. Theo-

rems 3, 4, and 5 of the present paper show that the restriction to

polynomials is inessential if e>0. It is conceivable that the known

inequalities for polynomials with c<0 can also be incorporated in

more general theorems.

2. Definitions and notation. To save repetition we state at the

outset

Assumption (A). The real parameters a, t, and c satisfy — oo <a

<oo, — oo<í<co, 0^c<co. The symbols (6), (x), (y), and (w)

stand for «-tuples of real, finite, positive numbers. The weights (w)

satisfy X"=i w¿=l.
We shall say that (x) is proportional to (y) if there exists k such

that Xi — kyiy i = 1, • • • , «. The largest among the values (xf)

= (xi, • • • , x'„) will be denoted by max(x'); similar, max 11—x| will

denote the largest absolute magnitude among the values (1— x)

= (1— Xi, • ■ ■ , 1— xn). We define icw) = icwi, • • • , cwn) and (xy)

= ixiyi, ■ • • , xnyn).

A prime is used as a reminder that (m') = («i, • • • ,«„_i) is an (« — 1)-

tuple. We shall be concerned with integrals Jfiu')du'=ffiu')dui • ■ •

dun-i over a domain of integration E = {all («') with w< > 0

(t = l, • • • , « — 1) and 5Z"-i «<<!}• From [6, p. 258] we have

(2.1) Bib) = r(ii) • • • r(&„)/r(*i +••• + *„)=  f Ê uTW,
J B i-1

where «n = l— Ui— • • • —un-i- If we define
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(2.2) P(b, «') ^ [B(b)]-X II uï \       («0 6 E,
»¿-i

1

1-1

then

(2.3) f  P(b,u')du' = 1.

Instead of defining the P function by a hypergeometric power series,

it is more convenient for present purposes to use an integral repre-

sentation [2, Equation (7.10)]:

(2.4) R(a, b, x) m J  ( ¿ «iX.YVfo «')<*«',

(2.5) 7(ô, x) =   f  log ( ¿ UíxA P(b, u')du'.

It is permissible to differentiate with respect to a under the integral

sign in (2.4). By (1.2) we have

Af(/, c; x, w) as [R(-t, cw, x)]1"

(2.6) = [ f ( Z «.*<) F(cw, «')<*«']   , (^0, c>0),

Af (0, c; x, w) = exp L(cw, x),    (c > 0).

The last equation is obtained by an application of L'Hospital's rule.

If c>0 it is evident that Af(i, c; x, w) is homogeneous of first degree

in (x) for every real value of t.

We shall use the notations (a, m)=T(a+m)/T(a)=a(a-{-l) • • •

(a-\-m — 1), if m is a positive integer, and (a, 0) = 1. It follows from

(2.1) that

„ „        f f[u?P(b,u')du'
{¿.I) J B >-l

= (bi, mi) ■ ■ ■ (ô„, m„)/(bi + ■ ■ • + bn, *»i + * • • + mn).

3. Aft as a limiting case of Af(i, c).

Lemma 1. Let (A) be satisfied, except that the values (x) need not be

positive, and let N be any positive integer. Then R(—N, cw, x) is a

continuous function of c in the interval 0<c<oo and satisfies (i)

\R( — N, cw, x)\ ^maxlxl^, (ii) lim^o R( — N, cw, x) = Z"-i wi^,
and (iii) lim,,..«, R( — N, cw, x) = (JXi v>iXi)N-
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Proof. Since | 23 M¿x>| Ar = max|:x;| ^ f°r every (u')EE, the in-

equality (i) is evident from (2.4). On making a multinomial expan-

sion of (2 'uiXl)N and using (2.7), we find

Al          (cwumi) ■ ■ ■ (cwn,mn)   mi
(3.1)    R(-N, cw, x) =——-2, -;-:-*i   •••*»,

(c, N) mil • ■ ■ mn\

where the summation extends over all nonnegative integers mi, • • • ,

mn whose sum is N. Each term in the summation is plainly a con-

tinuous function of c in 0<c< co, and hence R( — N, cw, x) is con-

tinuous also. As c—>0, the quantity g=(cwi, mi) ■ ■ • (cwn, mn)/(c, N)

tends to w, if m< = N for some value of * and to zero otherwise. Hence

(3.1) has the limit stated in (ii). As c—>co, g—>JJw™' and the right

side of (3.1) becomes the multinomial expansion of the limit stated

in (iii).

Theorem 1. Let (A) be satisfied. Then R(a, cw, x), L(cw, x), and

M(t, c; x, w) are continuous functions of c in 0<c< <x> and have the

following limits:

» /    » v —a

lim R(a, cw, x) = 2 Wjxr",        lim R(a, cw, x) = f ^ w<x< )    '

lim L(cw, x) = X) wi l°g xi>       lim L(cw, x) = log I 23 *"»#< ) >

lim M(t, c; x, w) = Mt(x, w),      lim M(l, c; x, w) = Mi(x, w).
C—tQ C—*w

Proof. The statements relating to M(t, c) follow by (2.6) from

those relating to R and L. Furthermore, since R and eL are homo-

geneous functions of (x), we may suppose that max| 1—x| <1. Since

this implies | X"-i w<(l—x<)| ^max| 1—x| <1 for every (u')EE, it

is permissible to make a binomial expansion in the integrand of (2.4) :

*=o      A!     |_ ,-i J

Because the infinite series converges uniformly on E, we may inte-

grate term by term to obtain

A   (a, N)
(3.2) R(a,b,x) = ¿2 -R(-N,b,l-x),    max    1 - x\< 1.

N-o     A!
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(The hypergeometric series for the R function [2] can be recovered

from (3.1) and (3.2).) An exactly similar argument gives

(3.3) L(b,x) = - S N~lRi-N, b, 1 - x),     max | 1 - x\ < 1.
N—l

We now put (&) = (cw) and show that the series (3.2) and (3.3) are

uniformly convergent in 0 < c < oo. From Lemma 1 we have

|P( — N, cw, 1— x)| ^max| 1— x\N. Furthermore, both of the follow-

ing series converge if max| 1—x| <1:

00     ( I a I  N) °°
£      '    "       max|l-*|* £  iV-'max | l-x|".
N=0 Nl JV=1

Hence, by Weierstrass' M-test, the series (3.2) and (3.3) converge

uniformly in 0<c< co. Since the individual terms of the series are

continuous functions of c by Lemma 1, it follows that the sums of the

series are also continuous.

Uniform convergence in 0<c< co implies further that as c—>0 or

oo we can proceed to the limit term by term. Using the limits given in

Lemma 1, we have for example

A    (a,N)   -
Z   -r-Iw^l-ft)»
N=0 Nl       i=i

Z w<  Z       '   ,   (1 - x,)N = ¿ WixT1.
i=l N-0 Nl <_1

Three more short calculations of the same kind complete the proof of

Theorem 1.

4. Properties of Mit, c). We state in Theorem 2 some elementary

properties that are apparent from Theorem 1 and preceding defini-

tions, especially (2.4) and (2.6) :

Theorem 2. Let (A) be satisfied.

(i) 7/xi = x2= • • • =xn=i¡, then Mit, c; x, w)=!-.

(ii) Mit, c; x, w) is a continuous function of (x).

(iii) If Xi^yifor alli = \, • • • ,n and Xi<yt for some i, then

Ria, b, x) < Ria, b, y),       a < 0,

Ria, b, x) > Ria, b, y),       a > 0,

Mit, c; x, w) < Mit, c; y, w).

Theorem 3. Let (A) be satisfied and assume min(x) <max(x). Then

Mit, c; x, w) is a continuous function of t satisfying

lim Ria, cw, x)
c-K)
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Af (s, c; x, w) < M(t, c; x, w)   if s < t,

M(t, c; x, w) —» max(x)    as i—* + oo,

Af (/, c; x, w) —* min(x)    as t —► — oo.

Proof. If c = 0 the assertions reduce by Theorem 1 to well-known

properties of Af( [3, Theorems 4 and 16]. If c>0 Equations (2.6)

express Af(¿, c; x, w) as the mean Mt(f) of a function with values

/(«') = Z"=i u'x'- 1° the domain E the effective bounds [3, p. 135]

of/are max/= max (x) and min/ = min (x). Theorem 3 then follows at

once from general properties of Mt(f) [3, pp. 143-145].

In the same manner we obtain the next two theorems. The first

comes from Theorems 87 and 197 of [3], in which the conditions for

strict convexity are not stated formally but are apparent from the

proofs. The second comes from Theorems 24, 198, and 186 of [3].

Theorem 4. Let (A) be satisfied. If min(x) < max(x) then

t log M(t, c; x,w) is a strictly convex function of t and log R(a, b, x) is

a strictly convex function of a.

Theorem 5 (Minkowski). Let (A) be satisfied. If (x) is not propor-

tional to (y), then

M(t, c;x + y,w) < M(t, c; x, w) + M(t, c; y, w),   (t > 1).

The inequalilty is reversed if t < 1.

Theorem 6. If (A) is satisfied and if t^O, then

(4.1) M(t, c; xrx, w) m [Mo(x, w)]clt[M(- t - c, c; x, w)]~1_c/'.

Proof. The R function satisfies the Euler transformation [2]

(4.2) R(-t, b, x"1) = ¿[ x*' R(c + t, b, x).
i-i

On raising both sides to the power I ft and replacing (b) by (cw), we

obtain (4.1). The relation Mt(x~x, w)M-t(x, w) = 1 is included as the

case c = 0.

Corollary 1. If (A) is satisfied, then (i) Af(l, c) = Mu (ii) M( — c, c)

= Afo, and (iii) M(-c-l, c) = (Af_iAfu)1/<1+':>.

Proof, (i) follows directly from (3.1); (ii) is (4.1) with t= —c; and

(iii) is obtained from (4.1) by putting t — 1 and using (i).

Theorem 7 (Holder). Let p and q satisfy Kp<<», 1/p+l/q = 1.

Let (A) be satisfied and assume (xp) is not proportional to (y5). If t>0,

or if't = 0 and c>0, then
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(4.3) M(t, c; xy, w) < [M(t, c; x», w)]l'"[M(t, c; y", w)]1'«.

The inequality is reversed if t<—c.

Proof. If c = 0 the theorem reduces to Holder's inequality [3,

Theorem 12] in the form Mt(xy, w)<Mpt(x, w)Mqt(y, w) if t>0, with

reversed inequality if /<0. Putting t = l and (w) = (u), we have the

more familiar form

(4.4) 23 *&Qi < ( 23 uixù   P ( £ «tf«)   ">        («') E E.

We take the logarithm of each side of (4.4), integrate over E with

P(cw, u') as weight function, and then take the exponential of each

side to prove Theorem 7 in the case t = 0, c>0. If i>0 and c>0, we

raise both sides of (4.4) to the power t, integrate over E, and apply

Holder's inequality for integrals to the right side to obtain

/(Ettj>) P du'
E

(4-5)

< [ jE (23 UiX^P du'Y [ J*   (23 uvVp du'~J \

Raising both sides of (4.5) to the power l/t gives the desired result.

To obtain the reversed inequality if t< — c, we replace (x) by (x_1)

and (y) by (y_1) in (4.3) and transform each of the three mean values

by (4.1). The factors Mo cancel, and unwanted exponents are removed

by raising both sides of the inequality to a negative power, thereby

reversing the direction of the inequality.

We remark that M(t, c;x,w) is a special case of the still more gen-

eral mean value [M(t, c; x', w)]11' which occurs on the right side of

(4.3). The additional parameter s leads to nothing new if c = 0, for

we then obtain M,t(x, w). If c>0, however, we have a three-param-

eter family of homogeneous means which includes Gauss' arithmetic-

geometric mean as the case n — 2, Wi = w2=l/2, s = 2, t= —1/2, c=l.

The next and final theorem follows directly from Dresher's inequal-

ity for integrals [l]. As in preceding theorems, the assumptions are

so stated as to exclude cases of equality.

Theorem 8 (Beckenbach-Dresher). Let (A) be satisfied and let s

and t satisfy (i) l<í<co,0^s = lor (ii) í = 1, 0 <s< 1. Define

[M(t, c; x, to)]"«-«)     (R(-t, cw, x)\1»,-'>
yi(s, I, c; x, w) = ~r-1-= I-)

[M(s,c;x,w)]>'«-'>     \R(-s,cw,x)J
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If (x) is not proportional to (y), then

Mis, t, c; x + y, w) < 9î(î, /, c; x, w) + SJîCr, t, c; y, w).
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