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ra + n)» - T(0x - r(£ + v)x - F« + n)xk + r(f + t,)x* - T(£)xk

+ T(Qxk - T(Qx

= T(t + r, - h)[T{to)x - F(£o)xt]

+ [r(f + n)** - r(ö*J

+ T({ - to)[TQ;0)xt - rft,)*]

G r({ + t, - £0)F2 + F2 + F(£ - ¿0)7,

C Fi + Vi + Vi C V;

i.e., [m+7])-T(0]BCVlor |t?| <Ô, ag£+77go, Ça<a. This proves

the required continuity of the function ¿—>F(£).

That F(£) is compact for £>£o follows from the fact F(£0) is a

compact operator and F(£) = F(^ — ̂ o)F(^0) where F(£—f0) is a con-

tinuous linear map of £ into £.
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ON RECURSIVELY DEFINED ORTHOGONAL
POLYNOMIALS1

T. S. CHIHARA

1. Introduction. Consider a set {P„(x)} of orthogonal polynomials

defined by the classical recurrence formula,

P„(x) = (x - cn)Pn_!(x) - X„Pn_2(x)        (ra = 1, 2, 3, • • • ),

P_i(x) = 0,       Po(x) = 1,       cn real,       Xn+i > 0.

In  [2], the author initiated a study of (1.1) based on the chain

sequences of Wall [ó], the fundamental relation being that the zeros
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of the Pn{x) lie in a subset of [O, ») if and only if c„>0 and

{X„+i/(cnc„+i)} is a chain sequence. This fact can be exploited to derive

a number of interesting connections between the behavior of the

sequences, {cn} and {X„}, and the spectrum of the distribution

functions, \p (support of di¡/{x)), with respect to which the Pn(x) are

orthogonal.

In the present paper, we wish to continue this study of (1.1),

especially in the case where the spectrum is a denumerable set which

is bounded below and has no finite point of accumulation. In case

the associated Hamburger moment problem (HMP) is indetermi-

nate, however, such conclusions are meaningless in view of the fact

that in such a case there exist solutions of the HMP whose spectra

have derived sets coinciding with arbitrarily prescribed closed sets

[3, p. 59]. We therefore also consider the problem of deciding the

determinateness of the HMP on the basis of (1.1).

2. Preliminaries. We always assume that c„ is real and X„+i>0.

We then introduce the following notation:

[cn, X„} denotes the ordered pair ({c„}, {Xn+i});

(P{c„, X„} denotes the polynomial set {Pn(x)} defined by (1.1);

§{cn, Xn| denotes the (unique) spectrum of the distribution func-

tions associated with (1.1) whenever the associated HMP is deter-

mined. The qualifying phrase, "provided the HMP is determined,"

is always understood when this notation is used;

X denotes the set of all pairs [cn, X„} such that cn>0 and

{X„+i/(cncn+i)} G 6, where as in [2] C denotes the set of all chain

sequences {an\ such that 0<an<l.

Finally, writing a*' = an+Jfc, we now prove:

Lemma. 7/ {c^ — e, X^'} £X for k sufficiently large, then §{cn, X„}

has no accumulation points smaller than e.

If {ô — c%\ X^'} G3C for k sufficiently large, then s{e„, X„} has no
accumulation points larger than 5.

Proof. In general, s{c„ — c, X„} = {x —c:xGs{c„, X„} } so that by

[2, Theorem l], s{c„, X„} C [a, °°) if and only if \cn — a, X„}G3C.

Thus if {cf-e, X^'JGX, then §{c¿l), X^Jct«, °°). Hence by
[2, Lemma 7], s{c„, X„} contains at most k points smaller than e.

Also,s{c — cn,X„} = {c—x:xGs{c„,X„} }sothats{cn,X„} C(— c0,t']

if and only if {b-cn, X„}G3C. Therefore, {S-ci*', Xi,*'}G3C implies

S { — c%\ X*'} C [ — 8, °° ), hence S { — c„, X„} contains at most k points

smaller than — 8.

Theorem 2.1. Let a = a {cn, X„} awd r = r {c„, X„} denote the smallest
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and largest accumulation points (in the extended real number system)

of S {c„, X„}. Then for every {ßn} E G

lim inf {Cn + Cn+\ — [(Cn — cn+i)2 + 4Xn+i//3n]1/2} ^ 2a-,

lim sup \cn + Cn+i + [(cn - cn+i)2 + i-K+i/ßn]1'2} a; 2r.
n—»oo

PROOF. Assume (cn — e) (c„+i — e) > 0. Then

an(t) = X„+i/[(c„ — e)(c„+i — e)] ^ ft,

if and only if either

(2 .1) 2e^C„ + Cn+l -   [(Cn - Cn+l)2 + i\n+l/ßn]Xli

or

(2.2) 2e^cn + cn+1 + [(cn - Cn+l)2 + iXn+i/ßn]xn.

Therefore if (2.1) holds ((2.2) holds) for n^N, then by [6, Theorem

20.1] {of'^JGe for every k^N. Then by the lemma, s{c„, X„}
has no accumulation points smaller than e (greater than e). That is,

<r^e (T^e) for every e satisfying (2.1) ((2.2)) for all n sufficiently

large.

Corollary. // {cn} and {Xn+i} are bounded, then

c* - 2\A* á <t   and   r ^ c* + 2-\A*

where c* = lim infn.^c«, c* = lim supn.Mc„, etc.

Proof. This follows from Theorem 2.1 by taking ßn = 1/4 and using

the inequality

[(Cn — C„+l)    +  16\„+i] ^    | Cn — Cn+l |   + 4\n+i.

If one considers some specific examples (e.g., the Jacobi poly-

nomials), the suggestion appears that in case limn,00c„ = c and

lim„..00Xn = X, then a = c — 2y/\ and t = c+2\A- This can be proven

using relations obtained in [2]. However, this and considerably more

has been proven much earlier by O. Blumenthal [l, pp. 16-18] who

showed that in the above case, the zeros of the P„(x) are everywhere

dense in [a, t]. (Blumenthal considers the denominators of "5-frac-

tions" so, technically, his results deal with the case, s{c„,X„} C [0, °°).

However, the general case is easily reduced to this by a translation

and an application of the relations obtained in [2, §2].)

A corollary of Blumenthal's theorem is the fact that if
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R„(x) = xF„_i(x) - ynRn-2(x),

(2.3) R.i(x) = 0,   R0(x) = 1,   Tn+i > 0,       (ra = 1, 2,3, • • • ),

lim y2n = r0,    lim y2n+í = Ti,
n—»°o n—*«

then s{0, yn} has no accumulation points on the exterior of

5'= [-7?, -f]U[r, u], where f= |r¿/2-rJ/2| and 77 = r¿/2+r}/2, and
the zeros of the R»(x) are everywhere dense in S'.

This follows from the fact   [2,  §2]  that R2n(x) = Pn(x2) where

{P„(x)}=(P{cn, yn\ with

(2.4) c„ = Y2n-i + 72n, Xn+i = 72nY2n+i (« = 1, 2, 3, ■ • • ; Yi =» 0).

Moreover, we also have

(2.5) 72„_i = m„_ic„   and   72n = (1 — tnn-i)c„    (w = 1, 2, 3, • • • )

where the mn are the minimal parameters of {Xn+i/(c„cn+1)} = {«„}.

Since limn,ooan = L = r0ri(r0+ri)-2<l/4 if To^ri, we have by

[2, Lemma 4]

lim mn = \{\ ± (1 - 4L)1'2],

where the + sign is taken if and only if \an\ determines its param-

eters uniquely. Thus (with To^Ti), r0<Fi if and only if {an\ deter-

mines its parameters uniquely, hence by [2, Theorem 5 ] if and only

if 0 is an isolated point of SÍc„, X„}. That is,

if r0>ri, thenOG§{0, 7n),
if To^ri, then 0G§{0, 7„} and 0 is an accumulation point if and

only if r0=ri.
The preceding—in particular the final assertion—can be nicely

illustrated by taking y2n = a, y%n+i = b (rag? 1). We find from (2.4) that

ci=a, c2n+i = a+b and \n+i = ab (ra^l). For the "kernel polynomials"

{(?*(*)} =<P{dn, vn) (see [2, (2.7)]) we have d„ = a+b and vn+i=ab

(ra^l). It then follows that the Qn(x) are essentially Tchebicheff

polynomials of the first kind:

Qn(x) = (ab)n'2Un(z),       z= (x- a- b)(iab)-U2.

The P„(x) are co-recursive with the Qn(x) and [3, §5]

Pn(x) = Q*n(x, c) = (abY'2[Un(z) + (b/ayi2Un-i(z)},     c - - (b/UY>\

Also, the P„(x) are orthogonal with respect to (sgn x)d\p(x) where

#(x) = x-\\ - z2)l'2dx   for    (Va - Vb)2 g, x á (Va + Vb)2
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with #(x)=0 otherwise if |c| ¿1/2 (b<a) while if |c| > 1/2, then

dipix) =0 otherwise except for z= — ia + b){iab)-112 (x = 0) when t/'has

a jump of magnitude ib—a)/b.

Since the P„(x) are orthogonal with respect to dipix2), we see that

s{0, yn\ has the asserted properties.

3. <r{cn, X„} = oo. In [2, Theorem 8] it was proved that if

lim„^Mc:n= co andlimsup„,a0Xn+i/(c„c:n+i)=P<l/4, thencr = cr{c„,Xn}

= co. The question of whether we can have cr= oo when P==; 1/4 nat-

urally arises and can be affirmatively answered.

Theorem 3.1. If for some {ß„}E<2>,

CnCn+l — An+l//3n
hm-= oo,

n->« Cn + C„+i

then cr{c„, X„} = oo.

Proof. With the aid of Bernoulli's inequality, we have

\t \i_l_>IA /flll/J , .[.     .^K+l/ßn-iCnCn+ll1'2
[(Cn - cn+i)2 + 4An+i//?nJ1/2 = (cn + cn+i)   1 H-

L (c + c„+i)2     J

- , „ CnCn+l — Xn+1/ßn
^ c„ + cn+i — 2-•

Cn T Cn+l

Thus by Theorem 2.1,

CnCn+l — Xn+1/ßn
hm-s o-.

»-»"> Cn + Cn+l

The simplest criterion is obtained by taking ßn = 1/4: er {c„, X„} = oo

if

cnc»+i — 4Xn+i
(3.1) hm-= ».

»-»" Cn + Cn+l

For example, if c„ = «, X„+1= (« + l)(w— V«)/4, then (3.1) holds.

Moreover, by Carleman's criterion [4, p. 59] (see (4.1)) the asso-

ciated HMP is determined.

A slightly more general criterion for cr{cn, X„} = oo is

CnCn+l 16»(» +  l)an"| Xn+1,, -x        ,.        CnCn+i    I"        I6nin + l)an~]                         Xn+i
(3.2)        hm —-   1- =«,   a„ =-

»-»» C„ + C„+iL (2« + 1)'    J CnCn+l

This can be obtained by taking ß„ = (2« + l)2/[l6«(« + 1)] ({/?„} has

parameters g„ = (2w-fT)/(4w+4)). In particular, if an ^1/4,



1965] RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS 707

I6n(n + l)ctn~] c„Cn+iCnCn+i    r        16w(» + l)a„"j

C„ + Cn+1 L (2m + l)2     J _   (Cn+ cn+i)(2n + I)2

so (3.2) holds if c„ = «2/(re), where limn*«, f(n) = °°- However, this only

requires 4Xn+i^w2(w + l)2/(w)/(w + l) so that Carleman's criterion may

not apply. Thus it may not be clear whether or not we are dealing

with a determined H M P. We will consider this question in §4.

We next obtain a simple condition for a{cn, X„} = 00 which applies

in certain cases where lim sup«..«, an>l/4. In such cases, we must of

course have lim infnH.w a„<l/4 since otherwise {¿„+0, Xn}G^ f°r

any a [6, p. 79] and we would have <r{c„, X„} = — 00.

Now suppose (o:„}G6 and let 6n = Af„—mn, where mn and Af„ are

the nth minimal and maximal parameters of {«„}. Then it is readily

verified that 0!„ + 5„5n_i/4=(l-gn-i)gn, g„ = (Af„+m„)/2. Thus we

can take /3„=o:„ + ô„Ô„_i/4 in Theorem 3.1 and obtain

CnCn+l        An+l/Pn CnCn+l

Cn "T Cn+l Cn T" Cn+l

so that: o-\c„, X„} = 00 if

/ a„\ CnCn+l        SnSn-1

\ ßj Cn + Cn+l      4/3,

5n5„_i         c„c„+i X„+i
(3.3) hm-= 00,        an —

»-»«•  a» + 5nSn-l  Cn + Cn+l CnC„+l

In particular, (3.3) holds if {S„} is bounded away from zero and

lim,,..,, c„= œ.

For example, consider a periodic sequence {a„} of period p. Sup-

pose {an} G 6 and let {Af„} be its maximal parameter sequence.

Then {Afn"'} is the maximal parameter sequence for {«„"'} = {an}

[2, Lemma 1 ], hence {Af„} is also periodic of period p.

Also, if {mn\ is the minimal parameter sequence, then {«in"'} is a

nonminimal parameter sequence for {a„}. It follows that mn<m„p)

<AfnJ° = Af„. Hence

lim mnp+k = M* á Af*        (k = 1, 2, • • • , p),
(3.4) n-.»

ak = (1 — Xi_i)xi,    0 < xt < 1        (k = 1, 2, • • • , p; x0 = x„),

where xA = jut (k = l, ■ • • , p) or xk = Mk (fc = l, • • • , p).

Conversely, it is clear that {a„}G<3 if (3.4) is solvable. For the

particular case p = 2, it is easily verified that (3.4) has distinct solu-

tions (ß%, a2) and (Afi, Af2), ii,-<Af,-, if and only if Vöi+Vfl2<l

(a unique solution if equality holds). Thus if {an} is periodic with
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period 2, then {an}E& and on>min(Mi—pi, M2 — p2)>0 il and only

il \/ttl + Vö2<l.

Returning to (3.3), we have that a{cn, X„} = oo if there exist con-

stants ai and a2 such that Vai+V<h<i and a2n+,áa¿ (i = l, 2)

(and lim,,^ cn= oo).

4. Determinancy of the HMP. Since the question of the determi-

nancy of the associated HMP is involved in the preceding, it is desir-

able to have criteria for deciding whether or not the HMP is deter-

mined. Most of the well known criteria are expressed directly in

terms of the moments (naturally). For our purposes, it is desirable to

have criteria expressed in terms of the coefficients in (1.1) as is the

case with Carleman's criterion:

00

(4.1) if  J)i„+i = co,   the HMP is determined.
h=i

We turn to this problem now, restricting ourselves to the case where

the moment problem has a solution whose spectrum is a subset of

[0, » )—that is, {c„, X„}G3C—which is sufficiently general for our

purpose.

Therefore assume {«„} = {Xn+i/(c„c„+i)} G6 and let mn denote its

minimal parameters. Then there exist positive constants yn (ra^2)

such that (2.4) and (2.5) hold. Hence, referring to (2.3):

Pn(0)   =  F2„(0)   =   (-1)"7274   •   •   • 72n,

7274 •  •  • 72n
\pn(0)\2^   (X2---X„+1)-1|P„(0)|2 =

7375 •   •  • 72n+l

(1 — «i) • • • (1 — m„_i)

jwi • • • m„-imncn+i

Referring next to the "numerator polynomials"  {P^'(x)} =G>{c%\ X^1'},

we must have for the corresponding orthonormal polynomials,

Cl>/„v I «        C1  ~~ W")  •••(!— >»l,n-l)
I i»'(0)|   =

»Mil •  "  ■ mi,n-iminCn+i

where the m\k are the minimal parameters of {a«1'}. Now by  [2,

Lemma l], mik<mk+i, so that

i   <d     12 mi     , ,

\pn(0)\     >--   |^+l(0)|2.
1 — mi

But by a well-known theorem of Hamburger [4, Theorem 2.17], a
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necessary and sufficient condition for the HMP to be determined is

the divergence of at least one of the two series

£ |A,(0)f    and    ¿ iCf.
n—0 n—0

We therefore have

Theorem 4.1. Let \cn, X„}G3C. Then a necessary and sufficient

condition for the associated HMP to be determined is the divergence of

f I    (i) ,2 _ A (1 - wii)(l - mi2) ■ ■ ■ (1 - t»i,„_i)

n=2 n-2 rnnmii • ■ ■ mi,n-íminCn+l

where the «n are the minimal parameters for {0$}.

A number of results follow immediately from Theorem 4.1.

Theorem 4.2. Let {cn, X„}G3C, \cn', X„' }EX. Let Xn+1/(c„c„+i)

íkan («2:2) and c„' =Oicn) («—>oo). Then if the HMP associated with

{cn, X„} is determined, so is the HMP associated with \cn', X„' }.

Proof. Let {<2„(x)} =6°{cn', Xn' } and let ml denote the minima,

parameters for {X„+1/(c„cn+1) }^.2. Then ml =mii [6, Theorem 19.6].

It follows that

| pn  (0) |   ^ — | qn  (0) |
Cn+i

where q„\x) is the orthonormal polynomial corresponding to Qn\x),

the numerator polynomial corresponding to Qn(x).

Theorem 4.3. Let [cn, X„}G3C and assume lim»..,*, an = L. Let

¿i = [l — (1— 4P)1/2]/2. Then the HMP is indeterminate if

Hm inf iCn+l/Cn)  >  (1  — ß)/ß,
n—»oo

or more generally if lim inf„_M c„/n> (1 —ß)/ß. The HMP is determined

if
lim sup(c„+i/cn) < (1 -ß)/ß,

71-* °0

or more generally if lim sup,-«, c„/n < (1 —ß)/ß.

PROOF. If Hm,,..,« an = L, then [2, Lemma 4] 0=P^l/4 and
limn^M «îi„ = limn.M mn = ß. The theorem now follows immediately

from Theorem 4.1 by application of the familiar ratio and root tests

(in the latter case, using the fact that a convergent sequence and the

sequence of its geometric means have the same limit).
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Consider, for example, the Stieltjes-Wigert polynomials (see [S,

p. 32]) which are known to be associated with an indeterminate

moment problem (see [4, p. 22]). Up to a nonzero multiplicative con-

stant, they are the polynomials satisfying (1.1) with

Cn = a"-1/2(a" + an~x - 1),       A„+i = a3"(a" - 1),    a = q~x > 1.

Carleman's criterion does not apply but {cn, X»|GX, and

lim an = a(a + 1)~2 ^ 1/8,       lim — = a2 > a =- •
n—» w n-» w    Cn U

Thus by Theorem 4.3, we verify the indeterminacy of the H M P.

We can handle, to a certain extent, cases when {ctn\ is not con-

vergent by combining Theorems 4.2 and 4.3. We also have the fol-

lowing result.

Theorem 4.4. Let {c„, XB} G 3C and an è 1/4 (n ^ 2). Then the HMP

is determined if

In particular, t/a„ = l/4 (n^2), the converse is also true.

Proof. The minimal parameters of the constant sequence {l/4J

are k/(2k-\-2) (k = 0, 1, 2,-■ • ). Thus if {Pn(x)} =(P{c„, X„}, where

4X„+i = c„c„+i (raS:2), we have | />»l5(0) 12 = (» + l)2/cn+2. The theorem

now follows from Theorems 4.1 and 4.2.

Returning to the example, c„ = n2f(n), X„+i ̂ »2(n + l)2/(«)/(w + l)/4

(limn,«,/(«) = <»), which was considered in §3, we see that the asso-

ciated HMP will be determined if £»-i [f(n)]~x= °o.
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