A PECULIAR BANACH FUNCTION SPACE

G. L. SEEVER¹

Let (S, Σ, μ) be a σ -finite measure space. A length function on (S, Σ, μ) is a non-negative, extended-real-valued function λ on the set $P = P(S, \Sigma, \mu)$ of non-negative, real-valued, Σ -measurable functions on S such that

- (1) $\lambda(f) = 0 \Leftrightarrow f = 0 \text{ a.e. } (\mu);$
- (2) $\lambda(f+g) \leq \lambda(f) + \lambda(g)$;
- (3) $\lambda(\alpha f) = \alpha \lambda(f)$ for α a non-negative real;
- (4) $f_n \uparrow f$ (i.e. $f_n \leq f_{n+1}$ for all $n \in \omega$ and $\lim_n f_n(s) = f(s)$ for all $s \in S$) $\Rightarrow \lambda(f_n) \uparrow \lambda(f)$;
 - (5) $E \in \Sigma$, $\mu(E) < \infty \Rightarrow \lambda(\chi_E) < \infty$;
- (6) $E \in \Sigma$, $\mu(E) < \infty \Rightarrow \exists \alpha > 0 \ni \int_E f d\mu \le \alpha \lambda(f)$ for all $f \in P$. \mathfrak{L}_{λ} is the set of real-valued Σ -measurable functions f such that $||f||_{\lambda} = \lambda(|f|) < \infty$. $(\mathfrak{L}_{\lambda}, ||\cdot||_{\lambda})$ is a complete semi-normed linear space (for a proof of this see [1]). $(L_{\lambda}, ||\cdot||_{\lambda})$ is the corresponding Banach space. L_{λ} is the Banach function space³ determined by λ . The associate length function of λ is the length function λ' defined by

$$\lambda'(f) = \sup \left\{ \int fg d\mu \colon g \in P, \lambda(g) \le 1 \right\}, \quad f \in P,$$

and $L_{\lambda'}$ is the associate Banach function space of λ .

Among the Banach function spaces are the familiar L^p spaces and the (less familiar) Orlicz spaces. If $1 , then the associate Banach function space of <math>L^p$ is $L^{p'}$ where 1/p+1/p'=1. The associate space of L^1 is L^{∞} , and that of L^{∞} is $L^{1,4}$

Let λ be a length function on (S, Σ, μ) . $f \in L_{\lambda}$ is absolutely continuous iff for any decreasing sequence $\{E_n\}_{n \in \omega}$ in Σ with $\bigcap_{n \in \omega} E_n = \emptyset$, $\lim_n ||f\chi_{E_n}|| = 0$. The set of absolutely continuous elements of L_{λ} is denoted by $(L_{\lambda})^{\chi}$. For example, if $1 \leq p < \infty$, then $(L^p)^{\chi} = L^p$; $(L^{\infty})^{\chi} = \{0\}$. Professor W. A. J. Luxemburg has posed to the author the following question: does there exist a length function λ such that

Received by the editors May 23, 1964.

¹ This work was partially supported by the Air Force Office of Scientific Research, Grant 62-140.

² This definition of length function doesn't enjoy universal currency. In [3], for example, (5) and (6) are omitted.

³ We identify a function in \mathcal{L}_{λ} with the corresponding member of L_{λ} . Condition (1) states that this identification is the same as identifying functions equal a.e. (μ) .

⁴ In general, $\lambda'' = \lambda$ for any length function λ . For a proof of this see [1].

 $(L_{\lambda})^{x} = (L_{\lambda'})^{x} = \{0\}$? The object of this note is to give an example of such a length function.

Let (S_i, Σ_i, μ_i) , i = 1, 2, be nonatomic measure spaces each of total mass 1, and let $(S, \Sigma, \mu) = (S_1 \times S_2, \Sigma_1 \otimes \Sigma_2, \mu_1 \otimes \mu_2)$. Let λ be defined by

$$\lambda(f) = \int ||f(\cdot, t)||_{\infty} d\mu_2(t), \quad f \in P,$$

where $\|\cdot\|_{\infty}$ denotes the essential supremum. That the above integrand is measurable follows from

PROPOSITION (LUXEMBURG). If λ_1 is a length function on (S_1, Σ_1, μ_1) , then for $f \in P$, $t \rightarrow \lambda_1(f(\cdot, t))$ is Σ_2 -measurable.

Proof. [2].

One easily verifies that λ is a length function on (S, Σ, μ) .

LEMMA 1. For $f \in P$, $\lambda'(f) = \| \int f(s, \cdot) d\mu_1(s) \|_{\infty}$.

Proof.

$$\lambda'(f) = \sup \left\{ \int \int fg d\mu \colon g \in P, \ \lambda(g) \leq 1 \right\}$$

$$\leq \sup \left\{ \int \left[\int f(s,t) \ d\mu_1(s) \right] \|g(\cdot,t)\|_{\infty} d\mu_2(t) \colon g \in P, \lambda(g) \leq 1 \right\}$$

$$\leq \sup \left\{ \left\| \int f(s,\cdot) \ d\mu_1(s) \right\|_{\infty} \int \|g(\cdot,t)\|_{\infty} d\mu_2(t) \colon g \in P, \lambda(g) \leq 1 \right\}$$

$$\leq \left\| \int f(s,\cdot) \ d\mu_1(s) \right\|.$$

If $g \in P_2 = P(S_2, \Sigma_2, \mu_2)$, and if $G \in P$ is defined by G(s, t) = g(t), $(s, t) \in S$, then $\lambda(G) = \int g d\mu_2$. This said, we have

$$\lambda'(f) \ge \sup \left\{ \int \int f(s,t)g(t) d\mu_1(s) d\mu_2(t) \colon g \in P_2, \int g d\mu_2 \le 1 \right\}$$

$$\ge \sup \left\{ \int g(t) \left[\int f(s,t) d\mu_1(s) \right] d\mu_2(t) \colon g \in P_2, \int g d\mu_2 \le 1 \right\}$$

$$\ge \left\| \int f(s,\cdot) d\mu_1(s) \right\|_{\infty}.$$

LEMMA 2. For $f \in P$, $\lambda(f) \ge || \int f(\cdot, t) d\mu_2(t) ||_{\infty}$.

⁵ This inequality and its use in the proof of the theorem following were pointed out to the author by W. A. J. Luxemburg.

PROOF. If $g \in P_1 = P(S_1, \Sigma_1, \mu_1)$, and if $\int g d\mu_1 \leq 1$, then $||f(\cdot, t)||_{\infty} \geq \int f(s, t)g(s)d\mu_1(s)$ for all $t \in S_2$. Therefore

$$\lambda(f) \ge \sup \left\{ \int \left[\int f(s,t)g(s) \, d\mu_1(s) \right] d\mu_2(t) \colon g \in P_1, \, \int g d\mu_1 \le 1 \right\}$$

$$\ge \sup \left\{ \int g(s) \left[\int f(s,t) \, d\mu_2(t) \right] d\mu_1(s) \colon g \in P_1, \, \int g d\mu_1 \le 1 \right\}$$

$$\ge \left\| \int f(\cdot,t) \, d\mu_2(t) \right\|_{\infty}.$$

THEOREM. $(L_{\lambda})^{\chi} = (L_{\lambda'})^{\chi} = \{0\}.$

PROOF. We first prove that $(L_{\lambda'})^x = \{0\}$. Since $f \in (L_{\lambda'})^x \Rightarrow |f| \in (L_{\lambda'})^x$, it is enough to prove that $f \in L_{\lambda'}$, $f \ge 0$, $f \ne 0 \Rightarrow f \in (L_{\lambda'})^x$. Let f be a non-negative nonzero member of $L_{\lambda'}$. There is r > 0 such that $F = \{t \in S_2: \int f(s,t) d\mu_1(s) \ge r\}$ has positive μ_2 -measure. Since μ_2 is nonatomic, there is a decreasing sequence $\{F_n\}_{n \in \omega}$ of Σ_2 -measurable subsets of F of positive measure and such that $\mu_2(F_n) \to 0$. Set $E_n = S_1 \times F_n$. $\lambda'(f\chi_{E_n}) = \text{ess.} \sup \{\int f(s,t) d\mu_1(s): t \in S_2\} \ge r$ for all n, and $\mu(E_n) \to 0$. Therefore, $f \in (L_{\lambda'})^x$.

For $f \in P_1$ let $\lambda_0(f) = \| \int f(\cdot, t) d\mu_2(t) \|_{\infty}$. By Lemma 2, $\lambda(f) \ge \lambda_0(f)$ for all $f \in P$. Now let $f \in L_{\lambda}$ be non-negative and nonzero. Interchanging the roles of (S_1, Σ_1, μ_1) and (S_2, Σ_2, μ_2) in the above paragraph yields the existence of an r > 0 and a decreasing sequence $\{E_n\}_{n \in \omega}$ of Σ -measurable sets of positive measure such that $\lambda_0(f\chi_{E_n}) \ge r$ for all n, and $\mu(E_n) \to 0$. Since $\lambda(f\chi_{E_n}) \ge \lambda_0(f\chi_{E_n})$, we have that $f \notin (L_{\lambda})^{\chi}$.

REFERENCES

- 1. W. A. J. Luxemburg, Banach function spaces, Thesis, Delft Technical University, Assen, 1956.
- 2. ——, On the measurability of a function which occurs in a paper by A. C. Zaanen, Nederl. Akad. Wetensch. Proc. Ser. A 61 (1958), 259-265.
- 3. Israel Halperin and W. A. J. Luxemburg, Reflexivity of the length function, Proc. Amer. Math. Soc. 8 (1957), 496-499.

University of California, Los Angeles