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1. Let X be a locally compact Hausdorff space, E a (real) locally
convex, complete, linear topological space, and (C*(X, E), B) the
locally convex linear space of all bounded continuous functions on X
to E topologized with the strict topology 8. When E is the real num-
bers we denote C*(X, E) by C*(X) as usual. When E is not the real
numbers, C*(X, E) is not in general an algebra, but it is a module
under multiplication by functions in C*(X).

This paper considers a Stone-Weierstrass theorem for (C*(X), 8),
a generalization of the Stone-Weierstrass theorem for (C*(X, E), 8),
and some of the immediate consequences of these theorems. In the
second case (when E is arbitrary) we replace the question of when a
subalgebra generated by a subset S of C*(X) is strictly dense in
C*(X) by the corresponding question for a submodule generated by
a subset S of the C¥*(X)-module C*(X, E). In what follows the sym-
bols Co(X, E) and Cyo(X, E) will denote the subspaces of C*(X, E)
consisting respectively of the set of all functions on X to E which
vanish at infinity, and the set of all functions on X to E with compact
support.

Recall that the strict topology is defined as follows [2]:

DEFINITION. The strict topology (B) is the locally convex topology
defined on C*(X, E) by the seminorms

s = Sup | 663700 .

where » ranges over the indexed topology on E and ¢ ranges over
Co(X).

When E is the real numbers the above definition may be given
simply as: a net {f.:a€A} converges strictly to a function f iff
{d)fa: a€ A} converges uniformly to ¢f for each ¢ in Co(X). It is
known that C*(X, E) is complete in the strict topology [2].

2. Strict approximation in C*(X). Stone-Weierstrass theorems were
given for C*(X), under special restrictions by Buck [2]. The exact
analogue of the classical theorem (for complex valued functions) was
obtained by Glicksberg [3] as a corollary to a version of Bishop’s
generalized Stone-Weierstrass theorem [1]. The proof is not elemen-
tary. We give here a proof which follows quite simply from Buck’s
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original theorems. These theorems were proved under the additional
hypothesis that either (a) the subalgebra in question contained a
function vanishing nowhere or (b) the space X on which the functions
were defined was g-compact.

THEOREM 1. Let X be a locally compact Hausdorff space and let A
be a strictly closed subalgebra of C*(X) which separates points of X and
which for each x in X, contains a function g with g(x) #0, then A=
C*X).

Proor. Let f&EC*(X) and let & Co(X) and €>0 be given. Let
K(¢) be the g-compact set outside of which ¢ vanishes identically.
K(¢) may be replaced by a regularly o-compact subset K of X (i.e.
K is a countable union of compact subsets K,, with K, contained in
the interior of K,;1) which contains K(¢) and which is an open F,
set [2]. K is a locally compact Hausdorff space in its relative topology
and hence the strict topology is defined for C*(K), and ¢ is in Co(K).
A restricted to K is dense in C*(K) in the strict topology by (b)
above, consequently there is a function g in U such that |¢(x)f(x)
—o(x) g(x)l <efor x in K. Since ¢f and ¢g vanish identically outside
K, we have ||g—f|| s <e. The conclusion now follows from the fact that
(C*(X), B) is complete.

The usual theorem for the complex case follows immediately from
the above. We also note without proof the following obvious conse-
quences of Theorem 1. (1) If X is a product of locally compact Haus-
dorff spaces which is locally compact, then every function in C*(X)
may be strictly approximated by finite sums of finite products of
functions of one variable on X. (2) There is a 1-1 correspondence be-
tween the B-closed ideals of C*(X) and the closed subsets of X. In
particular there is a 1-1 correspondence between the maximal $-closed
ideals and the points of X, and each B-closed ideal is the intersection
of all B-closed maximal ideals which contain it.

Theorem 1 may be applied to obtain the following result.

TuEOREM 2. If X 4s a locally compact and o-compact Hausdorff
space, then (C*(X), B) is separable iff X is metrizable.

Proor. Suppose that X is metrizable, hence since X is o-compact,
X is separable and satisfies the second axiom of countability. Let
® be a countable base for the topology on X. For each B in ®, the
complement of B, being closed, is the zero set of a function fz in
C*(X). Let % be the countable algebra generated by { fB| BE®} over
therationals. ¥ clearly satisfies the conditions of Theorem 1 and hence
is B-dense in C*(X). Conversely let S be a countable 3-dense subset
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of C*(X), and let %5 be the countable algebra generated by S over the
rationals. Let ¢ be any element of Co(X) which vanishes nowhere on
X. Let ¢Us = {of | fEUAs} S Co(X). By the classical Stone-Weierstrass
theorem ¢ is uniformly dense in Co(X). Let A* be the subset of
¢ consisting of all functions f such that |[ fll 1. These functions
may be used to define a function E on X into the unit cube Qv
=1L {lo, 1];|f€¥*} by E(x);=f(x). E is easily shown to be a
homeomorphism, hence X is metrizable.

It is conjectured that separability for (C*(X), B) under the sole
hypothesis that X is locally compact and Hausdorff is characterized
by the statement: (C*(X), B) is separable iff X is metrizable and
separable. Note that if X is metrizable and separable then X is
necessarily g-compact.

3. Strict approximation in C*(X, E). Let S be a subset of C*(X, E)
and let x be an element of X, M a closed subspace of E. If S(x)
= { a€E| a=f(x) for some fCS} is contained in M then we will say
S is restricted to M at x. We will call a subset S of C*(X, E) unre-
stricted if for each maximal closed subspace M of E and each point
x of X, there is a function f in S with f(x) & M.

THEOREM 3. Let X be a locally compact Hausdorff space, and E a
locally convex, complete, linear topological space. If S is an unrestricted
submodule of C*(X, E), then S is strictly dense in C*(X, E).

We first give a proof of the following fact due to Buck [2].
LeMMA. Coo(X, E) is strictly dense in C*(X, E).

Proor. Let f€C*(X, E), & Co(X), a seminorm » for E and >0
be given. ¢f is in Co(X, E). Let KT X be the compact set outside of
which |¢(x)f(x)|,<e/2. There exists a function 6 in Cyo(X) such that
0(x)=1for xin K and ||§]| £1.6fisin Coo(X, E) and | ¢0f(x) —¢f(x)],
<efor every x in X. Therefore f is in the strict closure of S.

Proor or THEOREM 3. In view of the preceding lemma we need
only show that if S is an unrestricted submodule, then Cyo(X, E) lies
within the strict closure of S. We show in fact that Cy(X, E) is in
the uniform closure of S (it is true that Co(X, E) is in the uniform
closure of \S).

Let f be any function in Co(X, E) and let a seminorm p for E and
€>0 be given. Let ¥,(x) = |f(x) | o ¥, is in Cpo(X). Let K be the com-
pact set outside of which ¥, vanishes identically. For each g in S, ¥,g
is in S and ¥,g(x) =0 for x not in K. Let x, be any point of K and
suppose f(x,) =£. By hypothesis there is a function g in S such that
g(xo) =& Let ¥,(x) =a. If a0 let k,, be the function a=1W,g. k,,(x0)
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=§, h,y(x) =0 for x not in K, and £, is in S. Thus there exists a neigh-
borhood Uy, of xo such that | k,(y) —f(y)|,<e for ¥ in U,,. Suppose
that W,(xo) =0. Then let ha,=,g. | heo(x0) —f(x0) | = | f(%0)|,=0 and
again by the continuity of seminorms we may choose a neighborhood
Us, of %o with | hae(¥) —f(¥) | ,<eforyin U, In the usual manner we
obtain a finite number of points x; in K, of functions %; in S, and
neighborhoods U; of x; such that if y is in K then y is in U, for some
7 and | hi(y) —f(y) | ,<e. The set of neighborhoods U; is a point finite
open cover of K in its relative topology. Since K is completely regular
and compact, there exist functions ¢; in C*(K)=C(K) such that
¢/(U;) C[0, 1], ¢; vanishes identically in K outside U,N\K, and
> i ¢i(x) =1 for each x in K. Since K is a compact subset of a com-
pletely regular space each ¢; may be extended to a function in C*(X),
so that the functions ¢;k; are defined for each 7 and are in S. The func-
tion F= ) ;¢ is in S, is identically 0 outside K and || F—f|,<e.
Thus Coo(X, E) lies in the uniform closure of S. From the preceding
lemma it follows that S is strictly dense in C*(X, E).

COROLLARY 1. Any subspace of C*(X, E) which is a Coo(X) sub-
module is strictly dense in C*(X, E). A strictly closed Coo(X) submodule
is a C*(X) module.

COROLLARY 2. A function f in C*(X, E) is in the strict closure of the
C*(X) submodule generated by an arbitrary subset S of C¥*(X, E) if and
only if for any x in X and maximal closed subspace M of E, S(x) S M
implies f(x) E M.

Theorem 3 generalizes results obtained in [2]. We use the above
results to characterize the strictly closed maximal submodules of
C*(X, E).

If M is a maximal closed subspace of E and « is a fixed point of X,
let S,.x={fEC*(X, E)|f(x)EM}. Let y be any point of X with
y#x,and aEE, b& M. Let ¢; and ¢, be functions in C*(X) such that
$1(y) =1, ¢1(x) =0, and ¢2(y) =0, ¢2(x) =1. Let h=a¢1+b¢z. h(x) =b,
h(y)=a and kisin S, ». Thus S, x»(x) = M and S, »(y) =E for each y
in X with y>#x. By Corollary 2, S, » is a strictly closed submodule of
C*(X, E). We show that it is a maximal submodule. Suppose that
S’ is a submodule of C*(X, E) such that S'DS;,um, S’ #S;,». Then
there is a function f in S’ such that f(x) & M. Let f(x) =NEE. E may
be represented as a direct sum M @ N where N is a complement of M.
Then for each {EE, {=m+n, with mE M, nE N, and so for some
in M and n, in N, A\=m4n,. There exists a function g in S; » such
that g(x) =m,. The function f'=f—g in S’ has the property f'(x) =n,.
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Since M is of deficiency 1 in E each point of IV is of the form an,,
where « is a real number. Thus if £ is any element of E, { =m4-an,,
there is a function & in 8, h=g+of’ (where g is a function in S;, )
such that k(x) =£, hence S'(x) =E. Also S’(y) =E for any point y in
X. Now let j be any function in C*(X, E) and let j(x) =%. There is a
function g in S’ with gi(x) =7. Let go=j—g1. gs(x)=0 so g is in
SemCS'. j=g1+g2 50 jis in § thus § is C*(X, E). Consequently
S:.u 1s a strictly closed maximal submodule. Conversely it is easy to
see that if Sis a strictly closed maximal submodule of C*(X, E) then
S is of the form S;,u.

Note that unlike the situation for maximal ideals there may exist
maximal submodules which are not strictly closed. Let E be any space
(with the usual requirements) which admits a discontinuous linear
functional L. Let N be the null space of L. N is a maximal subspace
of E and is dense in E. Let x be any point of X and let .S be the set of
all functions f in C*(X, E) such that f(x) € N. It is a routine verifica-
tion that Sis a C*(X) submodule of C*(X, E). We show that Sisa
maximal submodule. Let # be any element of E with g not in N and
let f be a function in C*(X, E) with f(x) =». If ¢ is any point of E
then £=an+n with #E N since N is maximal. Let g be any function
in C¥*(X, E) and let g(x)=N=09+n, nEN. Let g1=g—09f. g1(x)
=g(x) —9f(x) =n so g1is in S. g=g149f so S is a maximal submodule.
S is not strictly closed, however, by Corollary 2 of Theorem 3. We
state the preceding facts as

THEOREM 4. Let X be a locally compact Hausdorff space, E a locally
convex, complete linear space. The sirictly closed maximal submodules
of C*(X, E) are the submodules of the form Sz m. If E admits no dis-
continuous linear functional then every maximal submodule is closed.

TueEOREM 5. Let X be a locally compact Hausdorff space and E a
locally convex, complete linear space. A strictly closed submodule S of
C*(X, E) is-the intersection of all the maximal strictly closed submodules
that contain 1t.

Proor. Let S be any strictly closed submodule of C*(X, E). Fix x
in X and let M, be the closure of S(x) in E. Let 9M(x, S) be the set
of all maximal closed subspaces M of E which contain M,. M,
=N { M | Meam(x, S) } by the Hahn-Banach theorem for locally con-
vex spaces. Clearly for each x in X, S is contained in S;,» when M
is in 9M(x, S). Let S'=N {S,,,M|x€X, Mem(x, S)}. S is a strictly
closed submodule of C*(X, E) which contains S and by Corollary 2
of Theorem 3 each function f in S’ is in S so that S'=S.
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WEAK LIMITS OF POWERS OF A CONTRACTION
IN HILBERT SPACE!

S. R. FOGUEL
Let T be an operator, on the Hilbert space H, with ||T]| <1. Let
Hy = {x| weak lim Tx = 0},  H, = H,.

We shall use the facts, proved in [1], that

1. x€H, if and only if lim (T"x, x) =0 (Theorem 3.1).

2. On H, the operator T is unitary (Theorem 1.1).

Given xE H let x=x,+x,, where xo&E H, and x,& H;. The purpose
of this note is to find conditions, on the sequence (7™"x, x), that will
imply that x; is generated by eigenvectors of T. This is related to the
notion of mixing for ergodic transformations.

THEOREM 1. Let y be in the subspace gemerated by Tmx, T* x,
n=1,2,-- . If lim(T"y, x) =0, then weak lim T"y=0.

Proor. Since Hyand H; are invariant under T, it is enough to prove
the theorem for the case when x&€ H; (and thus also yEH,). If n;
is any subsequence of the integers and z=weak lim T*iy, then z is
orthogonal to T*x, k=0, +1, 2, - - - (since T is unitary on H,). But
2 belongs to the subspace generated by T'*"x. Hence, 2=0 and, thus,
weak lim Ty =0.

COROLLARY. Let P(N) be a polynomial whose roots of modulus one are
XI, tt Ty )\k. If hm(T"P(T)x, x)=0, then x:xo..l_x1 where: xOEHo,
0= ZLl 2i, T2:=N\izi.

Proor. Let x =x,+x;, where xo&H, and x;&EH,. By Theorem 1,
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