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1. Let X be a locally compact Hausdorff space, E a (real) locally

convex, complete, linear topological space, and (C*(X, E), ß) the

locally convex linear space of all bounded continuous functions on X

to E topologized with the strict topology ß. When E is the real num-

bers we denote C*(X, E) by C*(X) as usual. When E is not the real

numbers, C*(X, E) is not in general an algebra, but it is a module

under multiplication by functions in C*(X).

This paper considers a Stone-Weierstrass theorem for (C*(X), ß),

a generalization of the Stone-Weierstrass theorem for (C*(X, E), ß),

and some of the immediate consequences of these theorems. In the

second case (when E is arbitrary) we replace the question of when a

subalgebra generated by a subset S of C*(X) is strictly dense in

C*(X) by the corresponding question for a submodule generated by

a subset S of the C*(X)-module C*(X, E). In what follows the sym-

bols Co(X, E) and Coo(X, E) will denote the subspaces of C*(X, E)

consisting respectively of the set of all functions on I to £ which

vanish at infinity, and the set of all functions on X to £ with compact

support.

Recall that the strict topology is defined as follows [2 ] :

Definition. The strict topology (ß) is the locally convex topology

defined on C*(X, E) by the seminorms

11/11*,, = Sup | <¡>(x)f(x) |,
xçX

where v ranges over the indexed topology on E and </> ranges over

Co(X).
When E is the real numbers the above definition may be given

simply as: a net [fa:aEA] converges strictly to a function / iff

{<¡>fa: oíEA} converges uniformly to <j>f for each <p in C0(X). It is

known that C*(X, E) is complete in the strict topology [2].

2. Strict approximation in C*(X). Stone-Weierstrass theorems were

given for C*(X), under special restrictions by Buck [2]. The exact

analogue of the classical theorem (for complex valued functions) was

obtained by Glicksberg [3] as a corollary to a version of Bishop's

generalized Stone-Weierstrass theorem [l]. The proof is not elemen-

tary. We give here a proof which follows quite simply from Buck's

Received by the editors May 1, 1964.

654



STONE-WEIERSTRASS THEOREMS FOR STRICT TOPOLOGY 655

original theorems. These theorems were proved under the additional

hypothesis that either (a) the subalgebra in question contained a

function vanishing nowhere or (b) the space X on which the functions

were defined was <r-compact.

Theorem 1. Let X be a locally compact Hausdorff space and let 21

be a strictly closed subalgebra of C*iX) which separates points of X and

which for each x in X, contains a function g with g(x) ¿¿0, then 91 =

C*iX).

Proof. Let fEC*iX) and let <i>ECoiX) and e>0 be given. Let

Ki<t>) be the tr-compact set outside of which <f> vanishes identically.

Kiep) may be replaced by a regularly cr-compact subset K of X (i.e.

K is a countable union of compact subsets Kn, with Kn contained in

the interior of Kn+i) which contains Ki<p) and which is an open F,

set [2]. K is a locally compact Hausdorff space in its relative topology

and hence the strict topology is defined for C*(P), and <p is in Co(P).

31 restricted to K is dense in C*(P) in the strict topology by (b)

above, consequently there is a function g in H such that |<£(x)/(x)

—</>(x)g(x) I <e for x in K. Since <pf and cpg vanish identically outside

K, we have ||g—/||*<«. The conclusion now follows from the fact that

(C*iX), ß) is complete.

The usual theorem for the complex case follows immediately from

the above. We also note without proof the following obvious conse-

quences of Theorem 1. (1) If X is a product of locally compact Haus-

dorff spaces which is locally compact, then every function in C*iX)

may be strictly approximated by finite sums of finite products of

functions of one variable on X. (2) There is a 1-1 correspondence be-

tween the ß-closed ideals of C*(X) and the closed subsets of X. In

particular there is a 1-1 correspondence between the maximal /3-closed

ideals and the points of X, and each ß-closed ideal is the intersection

of all |3-closed maximal ideals which contain it.

Theorem 1 may be applied to obtain the following result.

Theorem 2. If X is a locally compact and a-compact Hausdorff

space, then (C*(X), ß) is separable iff X is metrizable.

Proof. Suppose that X is metrizable, hence since X is cr-compact,

X is separable and satisfies the second axiom of countability. Let

03 be a countable base for the topology on X. For each B in ©, the

complement of B, being closed, is the zero set of a function /# in

C*iX). Let 31 be the countable algebra generated by {/b|PG(B} over

therationals. 31 clearly satisfies the conditions of Theorem 1 and hence

is /3-dense in C*(X). Conversely let S be a countable j3-dense subset
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of C*(X), and let 2ls be the countable algebra generated by S over the

rationals. Let <f> be any element of C0(X) which vanishes nowhere on

X. Let</>9ls= {<t>f\fE$ls} QC0(X). By the classical Stone-Weierstrass

theorem </>2Is is uniformly dense in C0(X). Let 91* be the subset of

(p'ñs consisting of all functions/ such that |[/|| ST. These functions

may be used to define a function E on X into the unit cube Qw

= 11/ {[°. 1]/|/G2I*1 by E(x)f=f(x). E is easily shown to be a
homeomorphism, hence X is metrizable.

It is conjectured that separability for (C*(X), ß) under the sole

hypothesis that X is locally compact and Hausdorff is characterized

by the statement: (C*(X), ß) is separable iff X is metrizable and

separable. Note that if X is metrizable and separable then X is

necessarily ^-compact.

3. Strict approximation in C*(X, E). Let S be a subset of C*(X, E)

and let x be an element of X, Ma closed subspace of E. If S(x)

= {ctEE\ct =f(x) for some fES} is contained in AI then we will say

S is restricted to M at x. We will call a subset S of C*(X, E) unre-

stricted if for each maximal closed subspace M of E and each point

x of X, there is a function / in S with f(x) EM.

Theorem 3. Let X be a locally compact Hausdorff space, and E a

locally convex, complete, linear topological space. If S is an unrestricted

submodule of C*(X, E), then S is strictly dense in C*(X, E).

We first give a proof of the following fact due to Buck [2].

Lemma. C0o(X, E) is strictly dense in C*(-X\ E).

Proof. Let fEC*(X, E), <j>EC0(X), a seminorm v for E and e>0

be given. <f>f is in Co(X, E). Let KQX be the compact set outside of

which \<j>(x)f(x) | „<e/2. There exists a function 0 in Coo(X) such that

0(x) = 1 for x in K and ||0|| g 1. 6f is in C00(X, E) and | <pOf(x) -<j>f(x) |,
< e for every x in X. Therefore / is in the strict closure of S.

Proof of Theorem 3. In view of the preceding lemma we need

only show that if S is an unrestricted submodule, then Coo(X, E) lies

within the strict closure of S. We show in fact that C0o(X, E) is in

the uniform closure of S (it is true that C0(X, E) is in the uniform

closure of S).

Let/be any function in Coo(X, E) and let a seminorm p for E and

e>0 be given. Let ^P(x) = |/(x) | p. ̂  is in Coo(X). Let K be the com-

pact set outside of which ^ vanishes identically. For each g in S, ^pg

is in S and ^Pg(x) =0 for x not in K. Let x0 be any point of K and

suppose /(xo) = £. By hypothesis there is a function g in S such that

g(x0) =£. Let1Fp(xo) =a. If a^O let hx¡) be the function a-^pg. hXo(x0)
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= £, hx„(x) = 0 for x not in K, and hx„ is in S. Thus there exists a neigh-

borhood UXo of Xo such that | hX(l(y) — f(y)\„<e for y in UXo. Suppose

that ^(xo) = 0. Then let hx^ = ^,,g. \ hxtl(xo) — /(x0) | P = |/(x0) | P — 0 and

again by the continuity of seminorms we may choose a neighborhood

UXo of x0 with | hx„(y) —f(y) | P < e for y in £/I0. In the usual manner we

obtain a finite number of points xf in X, of functions hi in 5, and

neighborhoods Ui of x¡ such that if y is in ii then y is in £/,- for some

i and | hi(y) —f(y) | „<e. The set of neighborhoods £/,- is a point finite

open cover of K in its relative topology. Since K is completely regular

and compact, there exist functions <£; in C*(K) = C(K) such that

<¡>í(Uí)Q\0, l], <pi vanishes identically in K outside Uif\K, and

E« <i>i(x) — 1 for each x in K. Since i£ is a compact subset of a com-

pletely regular space each <£; may be extended to a function in C*(X),

so that the functions <pih¡ are defined for each i and are in 5. The func-

tion F= "Yi,i<Pihi is in S, is identically 0 outside K and ||F—/||p<e.

Thus Coo(X, E) lies in the uniform closure of 5. From the preceding

lemma it follows that 5 is strictly dense in C*(X, E).

Corollary 1. Any subspace of C*(X, E) which is a Coo(X) sub-

module is strictly dense in C*(X, E). A strictly closed Coo(X) submodule

is a C*(X) module.

Corollary 2. A function f in C*(X, E) is in the strict closure of the

C*(X) submodule generated by an arbitrary subset S of C*(X, E) if and

only if for any xinX and maximal closed subspace M of E, S(x)ç.M

implies f(x) E M.

Theorem 3 generalizes results obtained in [2 ]. We use the above

results to characterize the strictly closed maximal submodules of

C*(X, E).
If M is a maximal closed subspace of E and x is a fixed point of X,

let Sx,m= \fEC*(X, E)\f(x)EM\. Let y be any point of X with
yj^x, and aEE,bEM. Let^i and <p2 be functions in C*(X) such that

4>s(y) = 1» <Pi(x)=0, and <p2(y) =0, <£2(x) = l. Let h = acpi+bfa. h(x) =b,

h(y) =a and h is in Sx,m- Thus 5x,j^(x) = M and Sx,M(y) =E for each y

in X with y j¿x. By Corollary 2, Sx,m is a strictly closed submodule of

C*(X, E). We show that it is a maximal submodule. Suppose that

S' is a submodule of C*(X, E) such that S'^)Sx,m, S't¿Sx,m- Then

there is a function/in S' such that/(x) EM. Let/(x) =\G-E. E may

be represented as a direct sum M ©Af where Nisa complement of M.

Then for each %EE, % = m-\-n, with mEM, nEN, and so for some m0

in M and Wo in N, X = mo+«o. There exists a function g in Sx,m such

that g(x) =m0- The function/' =/—g in S' has the property/'(x) =«0.
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Since M is of deficiency 1 in P each point of N is of the form an0,

where a is a real number. Thus if £ is any element of E, % = m-\-ana,

there is a function h in S', h = g-\-af (where g is a function in Sx,u)

such that Â(x) =£, hence S'ix) —E. Also S'iy) =E for any point y in

X. Now let/ be any function in C*(X, P) and let/(x) =77. There is a

function gi in S' with gi(x)=7j. Let gi=j — gi. g2(x)=0 so g2 is in

Sx,mC.S'. j = gi+g2 so j is in S' thus S' is C*(X, P). Consequently

Sx,m is a strictly closed maximal submodule. Conversely it is easy to

see that if S is a strictly closed maximal submodule of C*iX, E) then

5 is of the form Sx,m-

Note that unlike the situation for maximal ideals there may exist

maximal submodules which are not strictly closed. Let E be any space

(with the usual requirements) which admits a discontinuous linear

functional L. Let N be the null space of L. N is a maximal subspace

of E and is dense in P. Let x be any point of X and let S be the set of

all functions/in C*iX, E) such that fix) EN. It is a routine verifica-

tion that S is a C*(X) submodule of C*(X, E). We show that 5 is a

maximal submodule. Let r¡ be any element of P with n not in N and

let / be a function in C*(X, P) with /(x) =r¡. If £ is any point of E

then £=017+« with nEN since N is maximal. Let g be any function

in C*iX, E) and let g(x) =\ = dt)+n, nEN. Let gi = g-df. gi(x)
= g(x) — 3/(x) = « sogi is in 5. g = gi+ô/so S is a maximal submodule.

S is not strictly closed, however, by Corollary 2 of Theorem 3. We

state the preceding facts as

Theorem 4. Let X be a locally compact Hausdorff space, E a locally

convex, complete linear space. The strictly closed maximal submodules

of C*iX, E) are the submodules of the form Sx,m- If E admits no dis-

continuous linear functional then every maximal submodule is closed.

Theorem 5. Let X be a locally compact Hausdorff space and E a

locally convex, complete linear space. A strictly closed submodule S of

C*iX, E) isthe intersection of all the maximal strictly closed submodules

that contain it.

Proof. Let 5 be any strictly closed submodule of C*(X, P). Fix x

in X and let Mx be the closure of Six) in E. Let 3H(x, S) be the set

of all maximal closed subspaces M of P which contain Mx. Mx

= fi {MI MEV&ix, S)} by the Hahn-Banach theorem for locally con-

vex spaces. Clearly for each x in X, S is contained in Sx,m when M

is in SfH(x, S). Let S'= f\{Sx,M\xEX, ME^ix, S)}. S' is a strictly

closed submodule of C*(X, P) which contains S and by Corollary 2

of Theorem 3 each function / in S' is in S so that S' = 5.



1965] weak limits of powers in hilbert-space 659

References

1. E. Bishop, A generalization of the Stone-Weierstrass theorem, Pacific J. Math.

11 (1961), 777-783.
2. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan

Math. J. 5 (1958), 95-104.
3. I. Glicksberg, Bishop's generalized Stone-Weierstrass theorem for the strict topol-

ogy, Proc Amer. Math. Soc. 14 (1963), 329-333.

University of Wisconsin and

University of Connecticut

WEAK LIMITS OF POWERS OF A CONTRACTION
IN HUBERT SPACE1

S. R. FOGUEL

Let T be an operator, on the Hilbert space H, with ||r|| gl. Let

Ho = {x\ weak lim Tnx = 0},        Hi = Ho.

We shall use the facts, proved in [l], that

1. xEHo if and only if lim (Tnx, x) =0    (Theorem 3.1).

2. On Hi the operator T is unitary    (Theorem 1.1).

Given xEH let x = x0+Xi, where x0EH0 and XiG-ffi. The purpose

of this note is to find conditions, on the sequence (Tnx, x), that will

imply that X\ is generated by eigenvectors of T. This is related to the

notion of mixing for ergodic transformations.

Theorem 1. Let y be in the subspace generated by T"x, T*nx,

ra = 1, 2, • • • . Iflim(Tny, x) =0, then weak lim Tny = 0.

Proof. Since H0 and Hi are invariant under T, it is enough to prove

the theorem for the case when xEHi (and thus also yEHi). If ra¿

is any subsequence of the integers and z = weak lim Tniy, then z is

orthogonal to Tkx,k = 0, +1, ±2, • ■ • (since T is unitary on Hi). But

z belongs to the subspace generated by T±nx. Hence, z = 0 and, thus,

weak lim Tny = 0.

Corollary. Let P(X) be a polynomial whose roots of modulus one are

Xi, • ■ • , Xa. If lim(T"P(T)x, x)=0, then x = x0+x1 where: x0EH0,

Xi= 2j*-i 2»> Tzi = \iz¡.

Proof. Let x = x04-Xi, where x0EH0 and XiEH¡. By Theorem 1,
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