INTRINSIC CHARACTERIZATIONS OF TANGENT SPACES
HOWARD OSBORN!

Given a real C* structure 4 on a C* manifold containing a point P,
the tangent space T'p is exactly the linear space Ep of all linear maps
A—PR such that Dfg=(Pf)Dg+(Pg)Df for (f, g €A X4, i.e., the
space of P-derivations of A. However, if 4 is a Cr structure for r < «
then Ep is much larger than T» (see [2] and [3]). Our purpose is to
introduce a coordinate-free characterization of 7'p which is valid for
all r.

We begin with a short proof of the unpleasant fact that Ep is
infinite-dimensional for r=1. In what follows, a maximal C* structure
consists of (globally defined) functions on a C" manifold, including
functions whose restrictions to some neighborhood of each point P
are coordinate functions, and including every function which is ap-
propriately differentiable in each coordinate patch. Such a restriction
is necessary to establish Tp=Ep in the case r = « ; for example, if x
is the usual coordinate function on the real line then the polynomial
function algebra in x and e® is clearly not maximal, and in fact
there are two linearly independent derivations at each point P, given

by
{Dlx =1 {sz =0
and
Dyer = Does = 1.

PROPOSITION 1. If A is any maximal C* structure then dimg Ep is at
least the cardinal of the continuum at each point P.

Proor. It suffices to consider the algebra 4 of all C! functions on
the real line, with coordinate function x& 4 such that Px=0. Let U
represent the linear space of all C* functions on the positive real num-
bers of order o(x~!) at the origin, V the subspace of C! functions of
order 0(1) at the origin, and for any ¢ in the open interval (1, 2) and

fEA set
f— Pf

xv

Af = +Vv

in the quotient space U/V. Since (f—Pf)/x and (g—Pg)/x are
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bounded at the origin for any f, g& 4, the identity

—~P —P —Pf f—Pfg—P
fs fg=}vg g+}%{ J - He—Pe
ol x7 x? x x

2—a

implies that A, is a real linear map A— U/ V such that A,fg = (Pf)A,g
+ (Pg)A.f, and consequently for any linear functional § on U/ V such
that 6(14+ V) =1 the composition 0A, is a P-derivation D, for each
gE(1, 2). Since

0 ifl<o<r<2
1 f1<o=7<2

D,|x|'={

and since |x|7€4 for r>1, it follows for each 7&(1, 2) that D, is
linearly independent of {D,|s <7}, hence that {D,|¢&(1, 2)} are
mutually linearly independent.

To avoid the difficulty presented by Proposition 1 we let ¥4
denote the continuous functions on the manifold with C! structure 4,
considered as an 4-module, to obtain the following result:

PROPOSITION 2. For any maximal C' structure A, the tensor product
over A of YA and the A-module of real linear maps A—LyA such that
Lfg=fLg+gLf is exactly the yA-module of vector fields.

Proor. For any fE 4 the existence of C! Urysohn functions implies
that the value P(Lf) depends only on the behavior of f in the ring of
germs at P (see [1], e.g.), so that we may as well suppose A the
algebra of all C! functions on a vector space W, with a basis %, - - -,
x"€ A of the linear functionals. Let W— and Wt denote the closed
compact subsets

Q| -1 =Qx—Pri<0, i=1,---,n}

and
{002 Qv —Pri=1, i=1,---,n},

and for any fE A let gp denote the restriction of f to W~ and kp the
polynomial function Pf4 Y; (P(8f/dx%))(xi— Px’) restricted to W+.
Then by a theorem of Whitney (see [4]) there is a real-valued C! func-
tion fp on W whose restrictions to W— and W+ are gp and kp, respec-
tively, and which is analytic in the complement. For any derivation
L satisfying the hypotheses of the proposition we therefore obtain
continuous functions Lf, 3.; (P(df/dx%))Lx?,and Lfr on W such that
QLf=QLfp in the interior of W—and QLfr= Y_: (QLx%)(P(3f/dx%))
in the interior of W+, the value of a derivative at Q depending only
on the germs at Q. By continuity it follows that PLf = PLfp
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= >.; (PLx")(P(3f/0x?)) for all P& W, and hence that Lf
= > (Lx?)(8f/dx?) forall f€ A, which meansthat L= ), (Lx?)(d/dx%)
as desired.

According to Proposition 2, if »=1, the tangent space Tp is the
subspace of those P-derivations of 4 which can be factored through
a derivation of 4 into the continuous functions, and this is the de-
sired invariant characterization of T'p. A similar result is valid for
any positive integer 7, the only change in the proof being that one uses
polynomials of order 7 in x*—y® in the definition of fp.

We give another description of T» which is simple but unfortu-
nately notinvariant since C! norms are defined in terms of “good” der-
ivations given by partial differentiation with respect to some co-
ordinate system.

Let U be any compact coordinate neighborhood of the point P
and let ” ||U represent the C! norm of the restriction of a C! structure
A to U, given by

b

say. A P-derivation D is bounded if and only if there is a compact
coordinate neighborhood U of P such that D is bounded as a linear
operator,

Yy

dxn

£l = max {IQfI,IQ:—; , - --,‘Q

ProrosiTION 3. Let A be a maximal C* structure on a C* manifold
containing a point P; then Tp is the vector space of bounded P-deriva-
tions.

Proor. For any polynomial function g in x!, - - -, x* Leibnitz’
rule implies Dg= Y ; (P(dg/dx%))Dx?, and for any fEA one finds

o2 (r g

8
< | bf - Dg| +ng—Z<P ai)mi
+2

d i)
P< s _ f.>Dx"
B dxt dxt

< (I2llo+ 1 21 ) I = o

Hence if || D||y < « one applies the Weierstrass approximation theo-
rem to conclude that

Df = Z (P %) D,
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THE DUAL OF THE FLABBY IS THE BAR
JAMES A. SCHAFER

Introduction. The object of this paper is to show the connection be-
tween the bar resolution for algebras and the canonical flabby resolu-
tion for sheaves. We will show that both resolutions are natural con-
structions arising from an adjoint relation between two functors. The
main result will be that there is a natural chain isomorphism between
the “categorical” bar resolution and the dual of the “categorical”
flabby resolution.

Throughout this paper %, B will denote additive categories and
F: 3>, G: A—B functors between them with F adjoint to G. That
is, for each 4 in U, B in B, there exists a natural isomorphism of
abelian groups,

Homy(FB, A) = Homg(B, GA).
It follows that there exist natural transformations,
e: Iy — GF, €:FG — Iy,

with certain properties. An immediate consequence of these properties
is that, for all 4 in . we have

(1) G(?A)GGA = idaA.

For this and other results concerning adjoint functors, see [3], [4].

Suppose S and T are functors from the category U to the category
¥ and that r is a natural transformation from S to T If U is a func-
tor from a category € to a category N and V is a functor from a cate-
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