AN EXAMPLE IN ČECH COHOMOLOGY

DANIEL S. KAHN¹

In this note, we give an example of a compact space X with integral Čech cohomology groups $H^q(X) = 0$, q > 0, but which can be mapped essentially onto the three-sphere S^3 . This cannot occur for finite-dimensional X [2].

We construct such an X for each odd prime p, which we now suppose fixed. Define X_0 to be $S^{2p} \cup_p e^{2p+1}$, the 2p-sphere with a (2p+1)-cell attached by a map of degree p. Inductively, we define X_{n+1} to be the (2p-2)-fold suspension $E^{2p-2}X_n$ of X_n , $n \ge 0$. We also define maps $\alpha_n \colon X_n \to X_{n-1}$, n > 1, by $\alpha_n = E^{2p-2}\alpha_{n-1}$, where α_1 is defined as follows: Let $\beta \colon S^{2p} \to S^3$ represent a generator of $\pi_{2p}(S^3; p) \approx Z_p$. Then $E^{2p-3}\beta \colon S^{4p-3} \to S^{2p}$ admits a coextension $\beta' \colon S^{4p-2} \to S^{2p} \cup_p e^{2p+1}$ [4, p. 13]. Since the homotopy class of β' is of order p, p admits an extension $\alpha_1 \colon S^{4p-2} \cup_p e^{4p-1} \to S^{4p-1} \cup_p e^{2p+1}$. We note that p admits an extension p and p are p and p and p are p and p and p are p are p and p are p and p are p and p are p are p and p are p and p are p are p and p are p are p are p are p and p are p are p are p and p are p are p are p and p are p and p are p are p are p are p are p and p are p and p are p ar

THEOREM [Toda]. Each f_n is an essential map. Further, all suspensions of f_n are essential.

Since $[X, S^3]$, the set of homotopy classes of maps of $X \rightarrow S^3$, is equal to Dir Lim $\{[X_n, S^3], \alpha_{n+1}^*\}$ [3, p. 228], f is essential.

X has the further property that $E^{n(2p-2)}X = X$, n > 0. The theorem of Toda implies that each $E^{n(2p-2)}f$: $E^{n(2p-2)}X = X \rightarrow S^{3+n(2p-2)}$ is also essential.

BIBLIOGRAPHY

- 1. J. F. Adams, Lectures on $K^*(X)$, Mimeographed notes, University of Manchester, 1962.
- 2. S. T. Hu, Mappings of a normal space into an absolute neighborhood retract, Trans. Amer. Math. Soc. 64 (1948), 336-358.
 - 3. E. Spanier, Borsuk's cohomotopy groups, Ann. of Math. 50 (1949), 203-245.
- 4. H. Toda, Composition methods in homotopy groups of spheres, Princeton Univ. Press, Princeton, N. J., 1962.
- 5. ——, On unstable homotopy of spheres and classical groups, Proc. Nat. Acad. Sci. 46 (1960), 1102-1105.

THE UNIVERSITY OF CHICAGO

Received by the editors May 15, 1964.

¹ This research was partially supported by National Science Foundation Grant GP-623.