FREE GROUPS, HIRSCH-PLOTKIN RADICALS, AND APPLICATIONS TO GEOMETRY

L. AUSLANDER AND E. SCHENKMAN¹

M. Auslander and R. Lyndon (see [5] for a reference) studied properties of F/[R, R], where F is a free group satisfying

$$1 \rightarrow R \rightarrow F \rightarrow f \rightarrow 1$$
.

Their techniques were homological in nature. Shortly thereafter L. Auslander and M. Kuranishi [1] showed that the above-mentioned results have a geometric interpretation. Recently both H. Neumann (see [5] for a reference) and B. H. Neumann [5] returned to the study of the paper of Auslander and Lyndon and gave both non-homological proofs and stronger results. The first part of the present paper gives a simple proof of a slightly stronger result (Theorem 2 below) than that given by B. H. Neumann (cf. Theorem 2.7 of [5]). The second part extends the geometric interpretation of L. Auslander and M. Kuranishi to this stronger result.

1. The group theory. Let R be a normal subgroup of a free group F, let R' denote [R, R], and let bars denote the images of F onto F/R'. We first prove the following two facts.

THEOREM 1. \overline{F} is torsion-free.

THEOREM 2. \overline{R} is the Hirsch-Plotkin radical of \overline{F} .

By the Hirsch-Plotkin radical of a group, we mean its maximal locally nilpotent normal subgroup.

If R^2 also denotes R' and if R^k is defined inductively to be $[R^{k-1}, R]$, then we have the following corollary.

COROLLARY 1. For each integer k>1, F/R^k is torsion-free, and R/R^k is the Hirsch-Plotkin radical of F/R^k .

PROOF OF COROLLARY 1. Since R/R^k is torsion-free, it follows that if F/R^k is not torsion-free, there is an $f \in F$, $f \notin R$, so that for some integer n, $f^n \in R^k$. But then $\bar{f}^n = 1$ contrary to Theorem 1. It is clear that R/R^k is in the Hirsch-Plotkin radical H/R^k of F/R^k . If H/R^k properly contained R/R^k then H/R^2 would properly contain R/R^2 contrary to Theorem 2.

Received by the editors June 11, 1963.

¹ The authors are indebted to the National Science Foundation for support and to the referee for his comments.

PROOF OF THEOREM 1. Suppose that $x^n \in R'$ for some $x \in F$ and some positive integer n. Let $S = \operatorname{Sgp}(R, x)$. Then R is normal in S and S/R is cyclic; consequently $R \ge S'$. On the other hand $S \ge R$ and hence $S' \ge R'$. Since $x^n \in R'$, $x^n \in S'$. But S is a free group and hence $x \in S'$ (since S/S' is torsion-free). Thus $x \in R$ since $R \ge S'$. But $x \in R$ and $x^n \in R'$ imply that $x \in R'$ (since R/R' is torsion-free). Hence $x \in R'$ and \overline{F} is torsion-free as is asserted in Theorem 1.

Before giving the proof of Theorem 2 we define the Schreier property and state a well-known fact as a lemma (cf. [2] for a proof for instance).

The transversal T of the subgroup H of the free group F on a free set of generators X, has the *Schreier property* if whenever $y_1 \cdot \cdot \cdot y_n$ is a reduced word in T (with each y_i an element of X or its inverse), then $y_1 \cdot \cdot \cdot y_{n-1}$ is also in T.

LEMMA. Let X be a free set of generators of a free group F, let H be a nontrivial subgroup of F, and let T be a transversal of H in F with the Schreier property. Then the set of nontrivial elements of $TXT^{-1} \cap H$ is a free set of generators of H.

PROOF OF THEOREM 2. Let \overline{H} be the Hirsch-Plotkin radical of \overline{F} . If $\bar{x} \in \overline{H}$ and $\bar{b} \in \overline{R}$ then for some integer m (depending on \bar{x} and \bar{b}), $[\cdot \cdot \cdot [\bar{b}, \bar{x}], \cdot \cdot \cdot, \bar{x}] = 1$, the bracket taken m times, or equivalently, if h and x are counter images in F then $[\cdot \cdot \cdot [\bar{b}, x], \cdot \cdot \cdot, x] \in R'$, the bracket taken m times. We shall derive a contradiction to this last relation on the assumption that \overline{H} properly contains \overline{R} , or equivalently that the counter image H of \overline{H} properly contains R. Suppose then that $y \in H$, $y \notin R$. Let $x \notin R$ be a member of a free set of generators of $\operatorname{Sgp}(y, R)$ and let $S = \operatorname{Sgp}(x, R)$. Then S is a free subgroup of the free group $\operatorname{Sgp}(y, R)$ and hence by the lemma (since 1 is in the transversal) x is a member of a free set of generators of S. But then each of the other free generators of this set may be modified by a suitable power of x to produce a set of free generators of S consisting of S and a set S of elements S which are in S.

Now S/R is cyclic and either of finite order n or of infinite order; in the first case $T_n = \{1, x^{-1}, \cdots, x^{-n+1}\}$ and in the second case $T_{\infty} = \{1, x, x^{-1}, x^2, x^{-2}, \cdots\}$ is a transversal of R in S with the Schreier property. We use the lemma again to pick a free set of generators of the subgroup R of the free group S. When T_n is the transversal, this set will consist of x^n and the conjugates $b_{\alpha}^{z^i}$ for $b_{\alpha} \in B$ and $i = 0, 1, \cdots, n-1$. When T_{∞} is the transversal, it will consist of $b_{\alpha}^{z^i}$ for $b_{\alpha} \in B$ and all integers i.

We will now have our contradiction when we show that if b is one

of the b_{α} then $[\cdot \cdot \cdot [b, x], \cdot \cdot \cdot, x]$, the bracket taken m times, is not in R' for each natural number m. Indeed $[b, x] = b^{-1}b^x$; $[[b, x], x] = b^{-x}b(b^{-1}b^x)^x$ which is congruent to $b^{x^2}(b^{-x})^2b \mod R'$. A direct induction then gives that $[\cdot \cdot \cdot [b, x], \cdot \cdot \cdot, x]$, the bracket taken m times, is congruent to

$$\prod_{i=0}^{m} (b^{x^{m-i}})^{(-1)^{i\binom{m}{i}}} \bmod R'.$$

When T_{∞} is the transversal (and also when T_n is the transversal with m=1), the elements $b^{2^{m-i}}$ are free generators of R, and hence the product in the last expression is obviously not in R'. In case T_n is the transversal with m>1, we let ϵ denote a primitive nth root of 1 and note that $(1-\epsilon)^m\neq 0$. We expand this expression by the binomial theorem and combine like powers of ϵ after using only the relation $\epsilon^n=1$ wherever possible. Since $(1-\epsilon)^m\neq 0$, it follows that it is not possible for all the coefficients of the ϵ_i to be zero after the combinations described. Looking back at the product describing

$$[\cdots [b, x], \cdots, x] \mod R',$$

the bracket taken m times, we see that this product cannot be in R' as was to be shown. This proves the theorem.

2. The applications to geometry. Let Γ be a torsion-free finitely generated group with a nilpotent Hirsch-Plotkin radical N so that $f = \Gamma/N$ is finite. We will call such a group Γ a nil-admissible group; thus a nil-admissible group Γ satisfies the diagram

$$1 \rightarrow N \rightarrow \Gamma \rightarrow f \rightarrow 1$$

with f a finite group. By a theorem of Mal'cev [3] there is a unique connected, simply connected, nilpotent Lie group L(N) with the following properties:

- (1) $N \leq L(N)$.
- (2) L(N)/N is compact.
- (3) Every automorphism of N is uniquely extendable to L(N). Now it is straightforward to verify that if we have an exact sequence of groups

$$1 \rightarrow A \rightarrow B \rightarrow C \rightarrow 1$$

and A is contained in a group A^* with the property that every automorphism of A is uniquely extendable to an automorphism of A^* , then there exists a unique B^* satisfying the diagram

$$1 \to A \to B \to C \to 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \to A^* \to B^* \to C \to 1$$

where all vertical arrows are inclusions. Hence we have a group Γ^* satisfying the diagram

$$1 \to N \to \Gamma \to f \to 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \to L(N) \to \Gamma^* \to f \to 1$$

where the vertical arrows are inclusions. But Γ^* is now a split extension; i.e., $\Gamma^* = L(N) \cdot f$. This follows directly from the divisibility of L(N) or from a result of Mostow [4]. Hence $\Gamma^* \leq L(N) \cdot A(L(N))$, where A(L(N)) denotes the group of continuous automorphisms of L(N). But we can define $L(N) \cdot A(L(N))$ as a group of transformations of L(N) by first defining the map ψ so that $\psi(n, g) = n$ and then defining $(n, g)m = \psi((n, g)(m, e))$ where $n, m \in L(N), g \in A(L(N))$ and e is the identity element of A(L(N)). We will call this the affine group of the nilpotent Lie group L(N). Thus Γ^* has been interpreted as a subgroup of affinities of L(N). Since:

- (1) Γ/N is finite,
- (2) L(N)/N is a compact manifold,
- (3) Γ is torsion-free,

it is straightforward to verify that Γ operates properly discontinuously on L(N) and with compact fundamental domain. We have therefore proven the following theorem.

Theorem 3. If Γ is nil-admissible then Γ operates properly discontinuously and with compact fundamental domain on a topological euclidean space.

COROLLARY 2. Let G be any module on which Γ operates trivially. Then the cohomology groups vanish, $H^q(\Gamma, G) = 0$ for all $q > \dim L(N)$.

In view of Corollary 1, when a normal subgroup R has finite index in a finitely generated free group F, then F/R^k is nil-admissible and hence Theorem 3 is directly applicable to $\Gamma = F/R^k$.

Added in proof. It has recently come to our attention that some of our results are closely related to results already in the literature. Thus Theorem 1 is due to G. Higman and is also a very special case of Theorem 5 in Baumslag, Wreath products and extensions, Math. Z. 81 (1963), 286-289. Theorem 2 is very closely related to Lemma 3 of Gruenberg, The residual nilpotence of certain presentations of finite groups, Arch. Math. 13 (1962), 408-417.

BIBLIOGRAPHY

- 1. L. Auslander and M. Kuranishi, On the holonomy group of locally Euclidean spaces, Ann. of Math. (2) 65 (1957), 411-415.
 - 2. M. Hall, Theory of groups, Macmillan, New York, 1959.
- 3. A. Mal'cev, On a class of homogeneous spaces, Amer. Math. Soc. Transl. (1)9 (1951), 276-307.
 - 4. G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44-45.
- 5. B. H. Neumann, On a theorem of Auslander and Lyndon, Arch. Math. 13 (1962), 4-9.

PURDUE UNIVERSITY

INJECTIVE MODULES UNDER CHANGE OF RINGS1

ERNST SNAPPER

Introduction. Let U and V be rings with unit element and $k \colon U \to V$ a ring epimorphism with kernel I. Every V-module (all modules are left modules) can be regarded as a U-module under k and hence it makes sense to ask when a V-module is U-injective.

For $u \in U$, we denote the left ideal $\{c \mid c \in U, cu = 0\}$ by 0:u. The answer to the above question is simply:

Criterion. A V-module A is U-injective if and only if it satisfies the following two conditions:

- (1) A is V-injective;
- (2) If $u \in I$ and $a \in A$ and (0:u)a = 0, then a = 0. (The cutest way to put (2) is 0:(0:u) = 0 for all $u \in I$.)

We prove the criterion in $\S 1$ and make an application of it to G-modules in $\S 2$. (G stands for a finite group.)

1. Proof of the criterion. Let the V-module A be U-injective. In order to prove condition 1, we select a left ideal M of V and a V-homomorphism $g: M \rightarrow A$. We have to produce an element $a \in A$ such that g(v) = va for all $v \in M$. (See [1, Theorem 3.2, p. 8].) Hereto we consider the left ideal $k^{-1}(M)$ of U and the U-homomorphism $gk: k^{-1}(M) \rightarrow A$. Since A is U-injective, there exists an $a \in A$ such that gk(u) = ua for all $u \in k^{-1}(M)$. Let now $v \in M$. Since k is an epi, v = k(u) for some $u \in k^{-1}(M)$ and, hence, g(v) = gk(u) = ua. The action of U on A is such that ua = k(u)a = va and condition 1 is proved.

Received by the editors March 18, 1964.

¹ This research was supported in part by the National Science Foundation grant NSF-GP722.