SECOND ORDER LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS¹

J. J. GERGEN AND F. G. DRESSEL

1. Introduction. It was noted by Pinney [2] that the solution of the nonlinear differential equation $y'' + p(x)y' + cy^{-3} = 0$, c constant, can be written in the form $y = (u_1^2 - u_2^2)^{1/2}$, where $u_1(x)$, $u_2(x)$ are appropriately chosen solutions of the linear equation u'' + p(x)u = 0. This result led Thomas [3] to ask: What equations of order n have general solutions expressible in the form $y = F(u_1, \dots, u_n)$, where u_1, \dots, u_n constitute a variable set of solutions of a linear equation? Thomas answered this question when the underlying linear equation is of the first order, u' + pu = q. He also gave the answer for homogeneous second order equations, u'' + pu' + qu = 0, when F depends only on one u, or when F is homogeneous of nonzero degree in two u's. Using the theory of passive partial differential equations, Herbst [1] removed these restrictions, obtaining the following general theorem.

THEOREM 1. If $u_1(x)$, $u_2(x)$ are variable independent solutions with Wronskian w of the linear equation

$$(1.1) u'' = w'w^{-1}u' + qu,$$

where w(x), q(x) are arbitrarily prescribed functions, then the equation

$$(1.2) v'' = w'w^{-1}v' + f(v, v', w, q)$$

has general solution $y = F(u_1, u_2)$ if, and only if, f has the form

$$(1.3) f = qZ(y) + A(y)(y')^2 + C(y)w^2,$$

where Z, A, C satisfy

$$(1.4) Z' - AZ = 1, ZC' + (3 - AZ)C = 0.$$

Herbst's theorem determines the form of f. In Herbst's analysis, however, F is determined only as a solution of a system of four partial differential equations. The purpose of this paper is to give a simple characterization of F. On the basis of information obtained a method is developed for the solution of f (1.2) when f has form f (1.3) and f (2, f (2, at isfy (1.4).

Received by the editors April 23, 1964.

¹ This research was supported by the United States Air Force under grants AFOSR 61-51 and 62-162 monitored by the Air Force Office of Scientific Research.

2. Main result. For the determination of F only a limited class of linear equations (1.1) is needed, namely, the class for which w and q are constants, $w \neq 0$. Our main result is as follows.

THEOREM 2. Suppose that $f(y, y', w, q) \in C'$ on a domain $R = \{(y, y', w, q) | m < y < M\}$, that

$$(2.1) \xi(y) \equiv f(y, 0, 0, 1) \neq 0, m < y < M,$$

and that $F(u_1, u_2) \in C''$ and m < F < M on a domain V. Suppose further that for arbitrary constants $w \ne 0$ and q, if $u_1(x)$, $u_2(x)$ are solutions of (1.1) with Wronskian w such that $(u_1, u_2) \in V$ for x on an interval I, then $y = F(u_1, u_2)$ satisfies (1.2) on I. Under these conditions, if $m < \eta < M$, then F can be written

$$(2.2) F = \Phi(\omega^{1/2}), (u_1, u_2) \in V,$$

where $\omega(u_1, u_2)$ is a homogeneous polynomial of degree 2, positive in V, and Φ is the inverse of

(2.3)
$$\phi(y) = \exp \left\{ \int_{x}^{y} \xi^{-1}(t) dt \right\}, \quad m < y < M.$$

The proof is based on the uniqueness property of solutions of differential equations. Knowledge of the form (1.3) of f is not required. We observe that in the Pinney case $\omega = u_1^2 - u_2^2$ and $\Phi(y) = y$.

Proof. We show first that

$$(2.4) L(u_1, u_2) \equiv u_1 F_1(u_1, u_2) + u_2 F_2(u_1, u_2) = \xi(F(u_1, u_2)), (u_1, u_2) \in V,$$

where $F_i = \partial F/\partial u_i$, i = 1, 2. Let (v_1, v_2) be a point of V other than the origin. Let v_1' , v_2' be arbitrarily chosen so that $w = v_1v_2' - v_2v_1' \neq 0$. Let $u_1(x)$, $u_2(x)$ be the solution on $(-\infty, \infty)$ of u'' = u with initial values $u_i(0) = v_i$, $u_i'(0) = v_i'$. Then u_1 , u_2 have Wronskian w, and $(u_1, u_2) \in V$ for x on an interval I containing x = 0. Hence, by hypothesis, $y = F(u_1, u_2)$ satisfies y'' = f(y, y', w, 1) on I. Differentiating y twice, and placing x = 0 in the final equation, we get

(2.5)
$$v_1F_1 + v_2F_2 + F_{11}(v_1')^2 + 2F_{12}v_1'v_2' + F_{22}(v_2')^2 = f(F, v_1'F_1 + v_2'F_2, w, 1),$$

where F, F_i , F_{ij} are evaluated at (v_1, v_2) . With v_1 , v_2 fixed we can let v_1' , $v_2' \rightarrow 0$ in (2.5), to obtain $L(v_1, v_2) = f(F(v_1, v_2), 0, 0, 1)$. Hence, (2.4) holds save possibly at the origin. We observe, however, that the origin cannot be a point of V. Otherwise, by continuity, we would have $\xi(F(0, 0)) = L(0, 0) = 0$, contrary to (2.1).

Now let $P_0: (v_1^0, v_2^0)$ be a fixed point in V. Let V_0 be an open disk in

V having center at P_0 . We prove that there exist constants a_0 , b_0 , c_0 , not all zero, such that

$$(2.6) \quad (b_0u_1+c_0u_2)F_1(u_1, u_2)-(a_0u_1+b_0u_2)F_2(u_1, u_2)=0, \quad (u_1, u_2)\in V_0.$$

By (2.1) and (2.4), the gradient of F is different from zero at P_0 . Accordingly, there are functions $\lambda_i(s)$, i=1, 2, of class C'' on an interval $|s| < \sigma$, where $0 < \sigma$, such that $\lambda_i(0) = v_0^i$, $0 < (\lambda_1'(0))^2 + (\lambda_2'(0))^2$, and

(2.7)
$$(\lambda_1, \lambda_2) \in V_0$$
, $F(\lambda_1, \lambda_2) = F(v_1^0, v_2^0)$, $|s| < \sigma$.

Let (v_1, v_2) be a second point of V_0 such that $w = v_1^0 v_2 - v_2^0 v_1 \neq 0$. Since $L(\lambda_1(s), \lambda_2(s)) \neq 0$, the equation

$$(2.8) \qquad \begin{pmatrix} F_{1}(\lambda_{1}, \lambda_{2}) & F_{2}(\lambda_{1}, \lambda_{2}) \\ -\lambda_{2} & \lambda_{1} \end{pmatrix} \begin{pmatrix} z_{1} \\ z_{2} \end{pmatrix} = \begin{pmatrix} F_{1}(v_{1}^{0}, v_{2}^{0}) & F_{2}(v_{1}^{0}, v_{2}^{0}) \\ -v_{2}^{0} & v_{1} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

admits for each s on $(-\sigma, \sigma)$, a unique solution $z_i = z_i(s)$. From (2.4) and (2.7) we have

(2.9)
$$L(\lambda_1, \lambda_2) = L(v_1^0, v_2^0), \quad |s| < \sigma.$$

Hence,

(2.10)
$$\begin{pmatrix} z_1(s) \\ z_2(s) \end{pmatrix} = \begin{pmatrix} \alpha(s) & \beta(s) \\ \gamma(s) & \delta(s) \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix},$$

where

$$(2.11) \quad L(v_1^0, v_2^0) \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} = \begin{pmatrix} \lambda_1 & -F_2(\lambda_1, \lambda_2) \\ \lambda_2 & F_1(\lambda_1, \lambda_2) \end{pmatrix} \begin{pmatrix} F_1(v_1^0, v_2^0) & F_2(v_1^0, v_2^0) \\ 0 & 0 & v_1 \\ -v_2^0 & v_1^0 \end{pmatrix}.$$

We note that $z_i = v_i$ for s = 0. Hence, for |s| sufficiently small, $|s| < \sigma_1$, say, where $0 < \sigma_1 \le \sigma$, we have $(z_1(s), z_2(s)) \in V_0$.

Suppose for the moment s held fast on $(-\sigma_1, \sigma_1)$, and consider the linear functions $u_i(x) = u_i(x, s) = (1-x)\lambda_i + xz_i$, $0 \le x \le 1$. We have $u_i(0) = \lambda_i$, $u_i(1) = z_i$. Since V_0 is convex it follows that $(u_1, u_2) \in V_0$, $0 \le x \le 1$. Further, u_1, u_2 satisfy u'' = 0 and, by (2.8), have Wronskian

$$\lambda_1(z_2 - \lambda_2) - \lambda_2(z_1 - \lambda_1) = \lambda_1 z_2 - \lambda_2 z_1 = v_1 v_2 - v_2 v_1.$$

Hence, $y = y(x) = y(x, s) = F(u_1(x, s), u_2(x, s))$ satisfies

$$(2.12) y'' = f(y, y', w, 0), 0 \le x \le 1.$$

The equation (2.12) is independent of s. Referring to (2.7), (2.8), and (2.9), we verify that

$$y(0, s) = F(\lambda_1(s), \lambda_2(s)) = F(v_1^0, v_2^0),$$

$$(2.13) y'(0, s) = (z_1 - \lambda_1)F_1(\lambda_1, \lambda_2) + (z_2 - \lambda_2)F_2(\lambda_1, \lambda_2)$$

$$= v_1F_1(v_1^0, v_2^0) + v_2F_2(v_1^0, v_2^0) - L(v_1^0, v_2^0).$$

Thus, y(x, s), y'(x, s) have the same initial values, y(0, s), y'(0, s), independently of s. Since $f \in C'$ on R, we conclude from the uniqueness property of solutions of differential equations that y(x, s) is independent of s on $|s| < \sigma_1$. Taking x = 1 we obtain

$$(2.14) \quad F(z_1(s), z_2(s)) = F(z_1(0), z_2(0)) = F(v_1, v_2), \qquad |s| < \sigma_1.$$

We now differentiate in (2.14) and place s = 0. Using (2.10) we get

$$(2.15) \quad (\alpha'(0)v_1 + \beta'(0)v_2)F_1(v_1, v_2) + (\gamma'(0)v_1 + \delta'(0)v_2)F_2(v_1, v_2) = 0.$$

From (2.11) we obtain

$$L\alpha'(0) = \lambda_1' F_1 + v_2^0(\lambda_1' F_{12} + \lambda_2' F_{22}),$$

$$L\beta'(0) = \lambda_1' F_2 - v_1^0(\lambda_1' F_{12} + \lambda_2' F_{22}),$$

$$L\gamma'(0) = \lambda_2' F_1 - v_2^0(\lambda_1' F_{11} + \lambda_2' F_{12}),$$

$$L\delta'(0) = \lambda_2' F_2 + v_1^0(\lambda_1' F_{11} + \lambda_2' F_{12}),$$

where L, F_i , F_{ij} are evaluated at (v_1^0, v_2^0) , and λ_i at s = 0. By (2.7) and (2.9) we have for the same evaluations

(2.16)
$$\lambda_1' F_1 + \lambda_2' F_2 = 0$$
, $v_1^0 (\lambda_1' F_{11} + \lambda_2' F_{12}) + v_2^0 (\lambda_1' F_{12} + \lambda_2' F_{22}) = 0$.
Hence,

(2.17)
$$\alpha'(0) + \delta'(0) = 0, v_1\alpha'(0) + v_2\beta'(0) = \lambda_1'(0), v_1\gamma'(0) + v_2\beta'(0) = \lambda_2'(0).$$

Now $0 < (\lambda_1'(0))^2 + (\lambda_2'(0))^2$. Placing $a_0 = -\gamma'(0)$, $b_0 = \alpha'(0) = -\delta'(0)$, $c_0 = \beta'(0)$, we conclude that a_0 , b_0 , c_0 are not all zero, and, using (2.15), that (2.6) holds at (v_1, v_2) . The only restriction on (v_1, v_2) was that $v_1^0 v_2 - v_2^0 v_1 \neq 0$. Hence, by continuity, (2.6) holds in V_0 .

We prove now that constants a, b, c, not all zero, can be chosen so that

$$(2.18) (bu_1 + cu_2)F_1(u_1, u_2) - (au_1 + bu_2)F_2(u_1, u_2) = 0, (u_1, u_2) \in V.$$

By our preceding analysis, if $P \in V$ and V_P is an open disk in V having center at P, there corresponds to P and V_P a set of constants a_P , b_P ,

 c_P , not all zero, such that (2.18) holds in V_P with a_P , b_P , c_P in place of a, b, c. We observe that since the gradient of F is nonvanishing in V, if (2.18) holds with two different sets of constants on a domain $D \subset V$, these constants must be proportional. Hence, if we normalize the a_P , b_P , c_P , so that the first one which is not zero is one, then a_P , b_P , c_P are uniquely determined. We show that the normalized a_P , b_P , c_P are independent of P. Let P_0 : (v_1^0, v_2^0) be a fixed point in V, and let P_1 : (v_1^1, v_2^1) be an arbitrary second point. Let Γ : $u_1 = \chi_1(t)$, $u_2 = \chi_2(t)$, $0 \le t \le 1$, $\chi_i(0) = v_i^0$, $\chi_i(1) = v_i^1$, be a Jordan arc in V with endpoints at P_0 , P_1 . Let E be the set of points t on [0, 1] such that $a_P = a_{P_0}$, $b_P = b_{P_0}$, $c_P = c_{P_0}$, where P has coordinates $(\chi_1(t), \chi_2(t))$. E is not void, and has on [0, 1] a least upper bound t', say. Utilizing our remark on the proportionality of constants for a domain D, we find first that $t' \in E$, and secondly that t' = 1. Thus $a_{P_1} = a_{P_0}$, $b_{P_1} = b_{P_0}$, $c_{P_1} = c_{P_0}$. Taking $a = a_{P_0}$, $b = b_{P_0}$, $c = c_{P_0}$, our conclusion relative to (2.18) follows.

The balance of the proof rests on (2.4) and (2.18). Let a, b, c, be constants, not all zero, for which (2.18) holds. Write $\omega(u_1, u_2) = au_1^2 + 2bu_1u_2 + cu_2^2$. From (2.4) and (2.18) we obtain

$$(2.19) \omega F_1 = (au_1 + bu_2)\xi(F), \omega F_2 = (bu_1 + cu_2)\xi(F)$$

for $(u_1, u_2) \in V$. We show first that $\omega \neq 0$ on V. Suppose, if possible, that $(v_1, v_2) \in V$ and $\omega(v_1, v_2) = 0$. Since $\xi(F) \neq 0$, it then follows that $av_1 + bv_2 = 0$, $bv_1 + cv_2 = 0$. Since V does not contain the origin, we then have $b^2 - ac = 0$. Not both a and c vanish, and we can assume without loss of generality that $a \neq 0$. In this case we have $\omega = (au_1 + bu_2)^2/a$ in V, and accordingly, by (2.19), $(au_1 + bu_2)^2F_1 = a(au_1 + bu_2)\xi(F)$ in V. From this relation we obtain $(au_1 + bu_2)F_1 = a\xi(F)$ in V except possibly on the line $au_1 + bu_2 = 0$. By continuity we then have $\xi(F) = (av_1 + bv_2)F_1/a = 0$ at (v_1, v_2) , which is a contradiction. Thus, $\omega \neq 0$ in V.

From (2.19) we have

$$(2.20) dF = (1/2)\xi(F)\omega^{-1}d\omega, (u_1, u_2) \in V.$$

Let η be arbitrary on (m, M). Motivated by (2.20) we define ϕ by (2.3). Then $\phi \in C''$ and $\phi' \neq 0$ on (m, M). From (2.20) we get

$$(2.21) \phi^{-1}(F)d\phi(F) = (1/2)\omega^{-1}d\omega, (u_1, u_2) \in V.$$

Since $\omega \neq 0$, we can normalize a, b, c so that at an arbitrary point (v_1, v_2) in V we have $0 < \omega$ and $\phi(F(v_1, v_2)) = \omega^{1/2}(v_1, v_2)$. The ω of our theorem is then determined. From (2.21) we obtain $\phi(F) = \omega^{1/2}$ in V. But ϕ has an inverse Φ . Thus, $F = \Phi(\omega^{1/2})$ in V. This completes the proof.

3. Solutions of (1.2). We now consider briefly the integration of (1.2) when f has the form (1.3) and Z, A, C satisfy (1.4). We assume that $A \in C^0$, $Z \in C'$, $C \in C'$, and that the equations (1.4) hold on an interval m < y < M. We note that the first equation in (1.4) implies that Z vanishes at most once on (m, M). Also, the two equations imply that $Y = Z^3C$ satisfies Y' = 4AY. Hence, $ZC \neq 0$ or $ZC \equiv 0$ on (m, M). It suffices then to treat two cases: Case I. $Z \neq 0$ on (m, M); Case II. $C \equiv 0$ and Z = 0 at some one point of (m, M).

Case I. For the case $Z\neq 0$, Theorem 2 is directly applicable. For f in the form (1.3), $f(y, 0, 0, 1) \equiv Z(y)$. We then define ϕ by (2.3) with $\xi=Z$ and η arbitrary on (m, M). We may observe that because of (1.4) ϕ can be written

(3.1)
$$\phi(y) = Z^{-1}(\eta)Z(y) \exp\left(-\int_{\eta}^{y} A(t) dt\right), \quad m < y < M.$$

Denoting by Φ the inverse of ϕ , we have $\Phi(t) \in C''$, $\Phi \neq 0$ on g < t < G, where (g, G) is the range of ϕ . Plainly, $0 \leq g$. It remains to determine ω . Let $\omega(u_1,u_2) = au_1^2 + 2bu_1u_2 + cu_2^2$ be an arbitrary homogeneous polynomial of degree 2 which is positive at some point in the plane. Put $\Delta = b^2 - ac$, and let V be the (or a) domain determined by $0 < \omega$, $g < \omega^{1/2} < G$. Suppose that w(x), q(x) are arbitrary functions satisfying $w \in C'$, $w \neq 0$, $q \in C^0$ on an interval J. Let x_0 be a point of J and let y_0 , y_0' be arbitrary initial values, where $m < y_0 < M$. Evidently we can find (v_1, v_2) in V such that $\omega_0^{1/2} \equiv \omega^{1/2}(v_1, v_2) = \phi(y_0)$. Furthermore, v_1' , v_2' can be determined so that $v_1v_2' - v_2v_1' = w(x_0)$, $\Phi(\omega_0^{1/2})[v_i, v_i']\omega_0^{-1/2} = y_0'$, where $[v_i, v_i'] = av_1v_1' + bv_1v_2' + bv_1'v_2 + cv_2v_2'$. Denote by $u_1(x)$, $u_2(x)$ the solutions of (1.1) on J with initial values $u_i(x_0) = v_i$, $u_i'(x_0) = v_i'$. Then $u_1(x)$, $u_2(x)$ have Wronskian w and $(u_1, u_2) \in V$ for x in an interval I containing x_0 . Defining y by (1/2) $\ln \omega = \int_{\eta}^{\eta} Z^{-1}(t) dt$, and making use of (1.1), the first equation in (1.4) and the identity

$$[u_i, u_i][u'_i, u'_i] = [u_i, u'_i]^2 - \Delta(u_1u'_2 - u_2u'_1)^2,$$

we find that $y = y(x) = \Phi(\omega^{1/2}(u_1(x), u_2(x)))$ satisfies

$$(3.3) \quad y'' = w'(x)w^{-1}(x)y' + q(x)Z(y) + A(y)(y')^2 - \Delta Z(y)\omega^{-2}w^2(x).$$

But

$$(3.4) C(y) = C(\eta)Z^{3}(\eta)Z^{-3}(y) \exp\left(4\int_{\eta}^{y} A(t) dt\right) = C(\eta)Z^{-1}(\eta)Z(y)\omega^{-2}.$$

Hence, y satisfies (1.2) on I if $\Delta = -C(\eta)Z^{-1}(\eta)$. We have, further, $y(x_0) = \Phi(\omega_0^{1/2}) = y_0$, $y'(x_0) = \Phi'(\omega_0^{1/2}) \left[v_i, v_i' \right] \omega_0^{-1/2} = y_0'$. Accordingly,

for Case I, if $\Delta = -C(\eta)Z^{-1}(\eta)$, then for arbitrary w(x), q(x) having the properties prescribed above, $y = \Phi(\omega^{1/2}(u_1, u_2))$, together with solutions $u_1(x)$, $u_2(x)$ of (1.1) having Wronskian w, and such that $(u_1(x), u_2(x)) \in V$ provide the general solution of (1.2).

Case II. If Z vanishes at a point of (m, M), then the definition (2.3) is inappropriate. However, if η is chosen so that $Z(\eta) \neq 0$, then (3.1) is applicable. Defining ϕ by (3.1), and using the first equation in (1.4), we find that

(3.5)
$$\phi'(y) = Z^{-1}(\eta) \exp\left(-\int_{\pi}^{u} A(t) dt\right), \quad m < y < M.$$

Thus, $\phi \in C''$ and $\phi' \neq 0$ on (m, M). Denoting by Φ the inverse of ϕ , we have again $\Phi(t) \in C''$, $\Phi' \neq 0$ on g < t < G, where (g, G) is the range of ϕ . In this case, g < 0 < G. Let $\tilde{\omega}(u_1, u_2) = au_1 + bu_2$ be an arbitrary nontrivial linear function. Determine V by $g < \tilde{\omega} < G$. Introducing w, q, u_1, u_2 as in the preceding paragraph, we find that $y = \Phi(au_1 + bu_2)$ satisfies

$$(3.6) y'' = w'w^{-1}y' + qZ(y) + A(y)(y')^2.$$

Since in the case under consideration we have $C \equiv 0$, we see that $y = \Phi(\tilde{\omega}(u_1, u_2))$, together with appropriate solutions of (1.1), provide the general solution (1.2) for Case II.

We may observe that canonical forms for the solution of (1.2) are

$$y = \Phi([u_1^2 + u_2^2]^{1/2}), \quad y = \Phi([u_1^2 - u_2^2]^{1/2}), \quad y = \Phi(u_1),$$

where u_1 , u_2 are solutions of (1.1).

REFERENCES

- 1. R. T. Herbst, The equivalence of linear and nonlinear differential equations, Proc. Amer. Math. Soc. 7 (1956), 95-97.
- 2. E. Pinney, The nonlinear differential equation $y+p(x)y+cy^{-3}=0$, Proc. Amer. Math. Soc. 1 (1950), 681.
- 3. J. M. Thomas, Equations equivalent to a linear differential equation. Proc. Amer. Math. Soc. 3 (1952), 899-903.

University of Glasgow, Glasgow, Scotland and Duke University