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1. Introduction. It was noted by Pinney [2] that the solution of

the nonlinear differential equation y" +pix)y' -\-cy~3 = 0, c constant,

can be written in the form y = iu\ — u\)112, where «i(x), m2(x) are

appropriately chosen solutions of the linear equation m"4-/>(x)m = 0.

This result led Thomas [3] to ask: What equations of order n have

general solutions expressible in the form y=F(wi, ••-,«„), where

«i, • • • , un constitute a variable set of solutions of a linear equation?

Thomas answered this question when the underlying linear equation

is of the first order, u'-\-pu = q. He also gave the answer for homo-

geneous second order equations, u" +£m'+cm = 0, when P depends

only on one u, or when P is homogeneous of nonzero degree in two m's.

Using the theory of passive partial differential equations, Herbst [l ]

removed these restrictions, obtaining the following general theorem.

Theorem 1. If mi(x), m2(x) are variable independent solutions with

Wronskian w of the linear equation

(1.1) m" = w'w~xu' + CM,

where w(x), qix) are arbitrarily prescribed functions, then the equation

(1.2) y" = w'w~^y' + fiy, y', w, q)

has general solution y = F(«i, m2) if, and only if, f has the form

(1.3) / - qZiy) + Aiy)iy')2 + Ciy)w2,

where Z, A, C satisfy

(1.4) Z' - AZ = 1,        ZC + (3 - AZ)C = 0.

Herbst's theorem determines the form of /. In Herbst's analysis,

however, F is determined only as a solution of a system of four partial

differential equations. The purpose of this paper is to give a simple

characterization of P On the basis of information obtained a method

is developed for the solution of (1.2) when / has form (1.3) and

Z, A, C satisfy (1.4).
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2. Main result. For the determination of F only a limited class of

linear equations (1.1) is needed, namely, the class for which w and q

are constants, wt^O. Our main result is as follows.

Theorem 2. Suppose that f(y, y', w, q) E C on a domain R =

{(y, y', w, q)\ m<y<M}, that

(2.1) £(y) s/(y, 0, 0,1)^0,       m < y < M,

and that F(ui, u2) E C" and m<F<M on a domain V. Suppose further

that for arbitrary constants w^O and q, if ui(x), u2(x) are solutions of

(1.1) with Wronskian w such that (ui, u2)EVfor x on an interval I,

then y = F(«i, u2) satisfies (1.2) on I. Under these conditions, if m<r¡

< M, then F can be written

(2.2) F = ^(a;1/2),       («i, u2) E V,

where co(mi, u2) is a homogeneous polynomial of degree 2, positive in V,

and $ is the inverse of

(2.3) <p(y) = exp i j   t\t) dt> ,        m < y < M.

The proof is based on the uniqueness property of solutions of differ-

ential equations. Knowledge of the form (1.3) of / is not required.

We observe that in the Pinney case u> = u\ — u\ and $>(y) =y.

Proof. We show first that

(2.4) L(ui, u2) s uiFi(ui, u2) + u2F2(uh u2) = %(F(uh u2)), (uh u2) E V,

where Fi = dF/dUi, i — l, 2. Let (»i, v2) be a point of Fother than the

origin. Let v{, v2 be arbitrarily chosen so that w — Viv2 —v2v{ ¿¿0. Let

Ui(x), u2(x) be the solution on (— <», oo) of u" = u with initial values

Ui(0) =»,-, ui (0) =v'i. Then ux, w2 have Wronskian w, and (wi, u2) E V

for x on an interval I containing x = 0. Hence, by hypothesis,

y = F(ui, u2) satisfies y" =f(y, y', w, 1) on I. Differentiating y twice,

and placing x = 0 in the final equation, we get

ViFi + v2F2 + Fn(v{)2 + 2Fí2v{vl + F22(v¿)2

= f(F,v{Fi + vlF2,w,i),

where F, F¡, F¡3- are evaluated at (vi, v2). With vi, v2 fixed we can let

»i. v{-*0 in (2.5), to obtain L(vu v2) =f(F(vu v2), 0, 0, 1). Hence, (2.4)

holds save possibly at the origin. We observe, however, that the origin

cannot be a point of V. Otherwise, by continuity, we would have

£(F(0, 0)) =L(0, 0) =0, contrary to (2.1).

Now let P0: (v°, v%) be a fixed point in V. Let F0 be an open disk in
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V having center at P0. We prove that there exist constants a0, b0, c0,

not all zero, such that

(2.6) (boUX-T-coU2)Fi(ui,u2) — (aoUi+boU2)F2(ui,u2) = 0,    («1, «2)GF0.

By (2.1) and (2.4), the gradient of F is different from zero at P0. Ac-

cordingly, there are functions X,(s), i = 1, 2, of class C" on an interval

|s| <<r, where 0<<r, such that Xf(0)=»Çt 0<(Xi'(0))2 + (X2' (0))2, and

(2.7) (Xi, X2) G Vo,       F(Xi, X2) = F(v\, v2),        \s\   < a.

Let (»i, v2) be a second point of Vo such that w = vxv2—v2Vi9é0. Since

L(Xi(s), \2(s)) 9^0, the equation

(2 8)        (Fl(Xh X,)    F^h X2)) ( Zl\ = (^fi   F,('°' "^ (Vx\

\    — X2 Xi      J\zJ      \    —»s »i     /\v2J

admits for each 5 on (—a, a), a unique solution z< = z,(s). From (2.4)

and (2.7) we have

(2.9) L(XhX2) = L(v°x,v°2),        \s\   <<7.

Hence,

(2.10)        («*Vf0 «'V*y

where

« ««%     r/°    °n/ä   "\      i/Xl   -^i.^)\/fi(v°) F2(^,t;2)\
(2.11) L(»i, »01        ,)= L rA    ,J o o       )•

\y    5/      \X2      Fi(Xi,X2)/\    -v, vi     /

We note that z< = z'¿ for 5 = 0. Hence, for |s| sufficiently small, \s\ <a\,

say, where 0<<ri^<r, we have (zi(s), z2(s))GFo.

Suppose for the moment s held fast on (—ai, ai), and consider the

linear functions m¿(x)=m¡(x, s) = (1— x)X<+xz¿, 0^x5=1. We have

Mj(0)=Xi, u¡(l)=Zi. Since F0 is convex it follows that (u\, m2)GF0,

O^xgl. Further, Wi, w2 satisfy u" =0 and, by (2.8), have Wronskian

0 0
Xi(z2 — X2) — X2(zi — Xi) = XiZ2 — X2Zi = viv2 — v2vi.

Hence, y=y(x) =y(x, s) = F(wi(x, 5), u2(x, s)) satisfies

(2.12) y" =f(y, y', w, 0),       0 á * á 1.

The equation (2.12) is independent of s. Referring to (2.7), (2.8),

and (2.9), we verify that
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y(0, 5) = F(Xiis), \t(s)) = Fivl, v°2),

(2.13) y'(0, s) = (2l - Xi)FiiXh X2) + (z2 - X2)F2(Xi, X2)

= viFiivi, v2) + î>2F2(î)i, v2) — Livi, v2).

Thus, y(x, s), y'(x, s) have the same initial values, y(0, s), y'(0, s),

independently of 5. Since fE C on R, we conclude from the unique-

ness property of solutions of differential equations that y(x, s) is

independent of 5 on \s\ <<ri. Taking x = 1 we obtain

(2.14) Fiziis), z2(i)) = F(zi(0), z2(0)) = F(vu v2),        \s\  < <n.

We now differentiate in (2.14) and place s = 0. Using (2.10) we get

(2.15) («'(OK + ß'iO)v2)Fi(vi, v2) + (y'ÍO)!;, + ô'iO)v2)F2ivu vt) = 0.

From (2.11) we obtain

La'(0) = Xi'Fi 4- v2(Xi'Fi2 + X2'F22),

Lß'(0) = X{F2 - v°iiX{Fi2 + X2'F22),

Py'(0) = XiFi - vliX{Fu + XiFn),

15'(0) = X2'F2 + v°iiX{Fn + X2'Fi2),

where P, P,-, Pj,-are evaluated at (t)J, v2), and X,at s = 0. By (2.7) and

(2.9) we have for the same evaluations

(2.16) Xi'Fi + X2'F2 = 0, t>î(Xi'Fii + X2'Fi2) + »°(Xi'Fi2 + X2'F22) = 0.

Hence,

a'(0) + a'(0) = 0,

(2.17) vlct'iQ) + vlß'(0) = X{ (0),

vW(P) + ¿¿'(O) =X2'(0).

Now 0<(Xi'(0))2+(X2'(0))2. Placing ao=-y'iO), &„ = a'(0) = -S'(0),

c0=j3'(0), we conclude that a0, &o, c0 are not all zero, and, using (2.15),

that (2.6) holds at (»i, v2). The only restriction on (»i, j;2) was that

v?t>2—^1^0. Hence, by continuity, (2.6) holds in F0.

We prove now that constants a, b, c, not all zero, can be chosen so

that

(2.18) (ômi 4- cu2)Fi(ui, u2) - iaui + bu2)F2iuh u2) = 0,   (uu m2) G F.

By our preceding analysis, if P G F and Vp is an open disk in V having

center at P, there corresponds to P and Vp a set of constants ap, bP,
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Cp, not all zero, such that (2.18) holds in Vp with ap, bp, Cp in place

of a, b, c. We observe that since the gradient of F is nonvanishing

in V, if (2.18) holds with two different sets of constants on a domain

DCV, these constants must be proportional. Hence, if we normalize

the ap, bp, cP, so that the first one which is not zero is one, then ap,

bp, Cp are uniquely determined. We show that the normalized ap, bp,

Cp are independent of P. Let P0: (v°u v°) be a fixed point in V, and let

Pi- (i>\, vl) be an arbitrary second point. Let V: ui = xi(t), m2 = Xü(/)i

0^¿ = 1, X»(0) =»?» Xf(l) =*,i> be a Jordan arc in V with endpoints at

Po,Pi- Let E be the set of points t on [0,1] such that aP = aPo, bp = bPo,

cp = Cp0, where P has coordinates (xi(t), Xs(0)- F is not void, and has

on [O, 1] a least upper bound t', say. Utilizing our remark on the

proportionality of constants for a domain D, we find first that t'EE,

and secondly that t' = i. Thus aPl = aP<¡, Z>Pi = 6p0, Cpx = Cpv Taking

a=ap^, b = bp0, c = Cp6, our conclusion relative to (2.18) follows.

The balance of the proof rests on (2.4) and (2.18). Let a, b, c, be

constants, not all zero, for which (2.18) holds. Write o)(ui, w2) =om2

-\-2buiU2-\-cu\. From (2.4) and (2.18) we obtain

(2.19) wFi = (aui + bu2)k(F),       wF2 = (bui + cu2)$(F)

for (ui, u2)EV. We show first that w^O on V. Suppose, if possible,

that (»1, v2)EV and <x>(vi, v2)=0. Since £(F)^0, it then follows that

avi-\-bv2 = 0, bvi-\-cv2 = 0. Since V does not contain the origin, we then

have b2—ac = 0. Not both a and c vanish, and we can assume without

loss of generality that a^O. In this case we have o) = (aui-\-bu2)2/a in

V, and accordingly, by (2.19), (aui-\-bu2)2Fi = a(aui-r-bu2)^(F) in V.

From this relation we obtain (awi+&M2)Fi = a£(F) in V except pos-

sibly on the line aui-\-bu2 = 0. By continuity we then have £(F)

= (az;i-r-fo;2)Fi/a = 0 at (»i, v2), which is a contradiction. Thus, w^O

in V.

From (2.19) we have

(2.20) dF = (l/2)t(F)u-ldu,       (ui,u2)EV.

Let 77 be arbitrary on (m, M). Motivated by (2.20) we define <p by

(2.3). Then <pEC" and <p'^0 on (m, M). From (2.20) we get

(2.21) <í.-1(F)d<í)(F) = (l/lia-ida,       («i, u2) E V.

Since o>5^0, we can normalize a, b, c so that at an arbitrary point

(vi, v2) in V we have 0<co and <p(F(vi, v2)) =wll2(vi, v2). The co of our

theorem is then determined. From (2.21) we obtain <p(F) =w1/2 in V.

But <p has an inverse <P. Thus, F=$(o)112) in V. This completes the

proof.
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3. Solutions of (1.2). We now consider briefly the integration of

(1.2) when/has the form (1.3) and Z, A, C satisfy (1.4). We assume

that AEC", ZEC, CEC, and that the equations (1.4) hold on an

interval m<y<M. We note that the first equation in (1.4) implies

that Z vanishes at most once on (w, M). Also, the two equations

imply that Y=Z3C satisfies F' = 4,4 F. Hence, ZC?¿0 or ZC=0 on

im, M). It suffices then to treat two cases: Case I. Zj^O on im, M);

Case II. C=0 and Z = 0 at some one point of im, M).

Case I. For the case Zt^O, Theorem 2 is directly applicable. For

/in the form (1.3),/(y, 0, 0, 1) = Ziy). We then define <j> by (2.3) with

£ = Z and v arbitrary on (w, M). We may observe that because of

(1.4) <p can be written

(3.1) <piy) = Z-\v)Ziy) exp ( - J " A it) dt\       tn<y< M.

Denoting by <$ the inverse of <¡>, we have <í>(¿) E C", $^0 on g <t <G,

where (g, G) is the range of <p. Plainly, O^g. It remains to determine

co. Letco(Mi,M2) =au\-\-2buiU2-\-cu\he an arbitrary homogeneous poly-

nomial of degree 2 which is positive at some point in the plane. Put

A = b2—ac, and let F be the (or a) domain determined by 0<w,

g <031I2<G. Suppose that w(x), qix) are arbitrary functions satisfying

wEC, wt^O, qEC on an interval J. Let x0 be a point of J and let

yo, y ó be arbitrary initial values, where m<y0<M. Evidently we can

find (vi, v2) in V such that wj/2=w1,2(»i, v2) =<j>iy0). Furthermore,

»i , v{ can be determined so that viv2 —v2v{ = w(x0), <ï>(«u/2) [»¿, v{ ]co¿"1/2

= yó, where [vit v¡ ] =aviv{ +bviv2 +bviv2+cv2V2. Denote by Mi(x),

m2(x) the solutions of (1.1) on / with initial values Mj(x0) =vit u[ (x0)

—vi. Then Mi(x), m2(x) have Wronskian w and («i, u2)EV for x in

an interval I containing x0. Defining y by (1/2) In w=/^Z-1(i) dt,

and making use of (1.1), the first equation in (1.4) and the identity

(3.2) [u,; Ui][ui, u',\ = [ui, m/]2 — A(«iM2 — u2u{)2,

we find that y=y(x) =í>(w1/2(mi(x), m2(x))) satisfies

(3.3) y" = w'ix)w-1ix)y' + q(x)Z(y) + ¿(yX/)2 - AZ(y)co-2w2(x).

But

U f''Ait)dt\ =(3.4) Ciy) = Civ)Z*iv)Z-*(y) exp [i J   A it) dt) = Cir,)Z~liv)Z(y)<c-2.

Hence, y satisfies (1.2) on 7 if A= — C(i7)Z-10f). We have, further,

y(xo) =3>(w¿/2) =ye,    y'(x0) =í»'(w¿/2) [»,,»/ ]wö1/2 = y¿.     Accordingly,
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for Case I, if A= — C(n)Z~x(ri), then for arbitrary w(x), q(x) having

the properties prescribed above, y=<ï>(co1/2(«i, u2)), together with

solutions ux(x), u2(x) of (1.1) having Wronskian w, and such that

(wi(x), w2(x))G V provide the general solution of (1.2).

Case II. If Z vanishes at a point of (m, M), then the definition (2.3)

is inappropriate. However, if n is chosen so that Z(r])9¿0, then (3.1)

is applicable. Defining <p by (3.1), and using the first equation in

(1.4), we find that

(3.5) <t>'(y) = Z~x(rA exp ( -  f A(t)dt\        m<y< M.

Thus, <j>EC" and cb'^O on (m, M). Denoting by $ the inverse of <j>,

we have again $(t)EC", .p'j^O on g<t<G, where (g, G) is the range

of <j>. In this case, g<0<G. Let w(«i, u2) = aui+bu2 be an arbitrary

nontrivial linear function. Determine V by g<û<G. Introducing

w, q, «i, m2 as in the preceding paragraph, we find that y =$(aui+bu2)

satisfies

(3.6) y" = w'w-xy' + qZ(y) + A(y)(y')2.

Since in the case under consideration we have C=0, we see that

y=í>(¿ó(Mi, m2)), together with appropriate solutions of (1.1), provide

the general solution (1.2) for Case II.

We may observe that canonical forms for the solution of (1.2) are

2 2   1/2 2 21/2

y = $([mi + m2]    ),    y = $([mi — M2]    ),   y = $(mi),

where Mi, m2 are solutions of (1.1).
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