FACTOR SETS FOR DOUBLY STOCHASTIC OPERATORS ON A HILBERT SPACE

RICHARD SINKHORN

A doubly stochastic matrix is usually defined as an $n \times n$ matrix which has nonnegative elements and row and column sums one. If the restriction on the nonnegativity of the elements is ignored, a definition equivalent to the row-column sum condition can be given which does not mention the elements at all. Let u be the n-dimensional column vector whose components are all equal to $n^{-1/2}$. (We have made ||u|| = 1 for convenience.) An $n \times n$ matrix T will have row and column sums one if and only if $Tu = T^*u = u$. In this paper we shall use the term doubly stochastic to describe the members of this larger class of matrices. We label this class \mathfrak{D}_u .

In [2] the author gave a characterization of this matrix class in terms of a certain factoring problem:

Theorem 1. Let $1 \oplus 0$ denote the **n**-dimensional vector whose first component equals one and whose remaining components all equal zero and set

$$\mathfrak{O}_n = \{ T \in \mathfrak{M}_n | T(1 \oplus 0) = u, T'u = 1 \oplus 0 \},$$

 \mathfrak{M}_n denoting the $n \times n$ complex matrices. Then

$$\mathfrak{D}_{u} = \mathfrak{O}_{n} \mathfrak{O}'_{n}, \qquad \mathfrak{O}'_{n} \mathfrak{O}_{n} = 1 \oplus \mathfrak{M}_{n-1},$$

and, in fact, if \mathfrak{X}_n , $\mathfrak{Y}_n \subseteq \mathfrak{M}_n$ are such that $\mathfrak{D}_u = \mathfrak{X}_n \mathfrak{Y}_n$, $\mathfrak{Y}_n \mathfrak{X}_n = 1 \oplus \mathfrak{M}_{n-1}$, then there exists a complex number $\rho \neq 0$ such that $\mathfrak{X}_n \subseteq \rho \mathfrak{D}_n$, $\mathfrak{Y}_n \subseteq \rho^{-1} \mathfrak{D}'_n$. The inclusion may be proper. (A prime on a matrix denotes transpose. A prime on a set of matrices denotes the collection of transposes in that set.)

It is the intent of this paper to establish results of a similar nature which are not dependent upon the finiteness of dimension. First, then, we extend the notion of doubly stochastic to the infinite-dimensional case.

Let \mathfrak{R} be an infinite-dimensional complex Hilbert space and fix $u \in \mathfrak{R}$, ||u|| = 1. The members of

$$\mathfrak{D}_{u} = \{ T \in [\mathfrak{M}] \mid Tu = T^{*}u = u \}$$

are said to be doubly stochastic on X.

Presented to the Society, January 24, 1964; received by the editors March 16, 1964.

The following theorem characterizes this generalized $\mathfrak{D}_{\mathbf{u}}$ in terms of a certain set of mappings in $[C \oplus \mathfrak{R}, \mathfrak{R}]$, where C is the complex plane.

THEOREM 2. Let

$$\mathfrak{O} = \{ T \in [C \oplus \mathfrak{R}, \mathfrak{R}] \mid T(1 \oplus 0) = u, \ T^*u = 1 \oplus 0 \}.$$

Then $\mathfrak{D}_u = \mathfrak{O}\mathfrak{O}^A$, $\mathfrak{O}^A\mathfrak{O} = I_C \oplus [\mathfrak{K}]$, where I_C is the identity function on C. In fact, if $\mathfrak{X} \subseteq [C \oplus \mathfrak{X}, \mathfrak{K}]$ and $\mathfrak{Y} \subseteq [\mathfrak{X}, C \oplus \mathfrak{K}]$ are such that $\mathfrak{D}_u = \mathfrak{X} \mathfrak{Y}$, $\mathfrak{Y} \mathfrak{X} = I_C \oplus [\mathfrak{K}]$, then there is a complex number $\rho \neq 0$ such that $\mathfrak{X} \subseteq \rho \mathfrak{O}$, $\mathfrak{Y} \subseteq \rho^{-1} \mathfrak{O}^A$. If, in addition, $\mathfrak{Y} = \mathfrak{X}^A$, then $|\rho| = 1$. In any event, the inclusions may be proper. (For any collection of mappings, X, X^A is used to denote the set of adjoints of the members of X.)

The first part of Theorem 2 is a consequence of the following two lemmas:

LEMMA 1.
$$I_c \oplus [\mathfrak{M}] = \{ T \in [C \oplus \mathfrak{M}] \mid T(1 \oplus 0) = T^*(1 \oplus 0) = 1 \oplus 0 \}.$$

PROOF. Let $T \in [C \oplus \mathcal{K}]$ and pick $h \in \mathcal{K}$. There exist $\mu \in C$, $h' \in \mathcal{K}$ such that $T(0 \oplus h) = \mu \oplus h'$. Then if $T^*(1 \oplus 0) = 1 \oplus 0$,

$$(T(0 \oplus h), 1 \oplus 0) = (0 \oplus h, T^*(1 \oplus 0)) = (0 \oplus h, 1 \oplus 0) = 0,$$
 while, at the same time,

$$(T(0\oplus h), 1\oplus 0) = (\mu \oplus h', 1\oplus 0) = \mu.$$

Thus, $\mu = 0$, showing that $T(0 \oplus h) = 0 \oplus h'$.

Define $T_1: \mathcal{K} \to \mathcal{K}$ by the rule $T_1h = h'$. Clearly, T_1 is linear. Furthermore,

$$||T_1h|| = ||h'|| = ||0 \oplus h'|| = ||T(0 \oplus h)|| \le ||T|| ||0 \oplus h|| = ||T|| ||h||,$$

showing that T_1 is bounded with $||T_1|| \le ||T||$. Thus $T_1 \in [\mathfrak{X}]$.
If $T(1 \oplus 0) = 1 \oplus 0$, then, for any $\lambda \in C$, $h \in \mathfrak{X}$,

$$T(\lambda \oplus h) = T(\lambda \oplus 0) + T(0 \oplus h) = \lambda T(1 \oplus 0) + (0 \oplus T_1 h)$$

= $\lambda (1 \oplus 0) + (0 \oplus T_1 h) = \lambda \oplus T_1 h = (I_c \oplus T_1)(\lambda \oplus h),$

showing that $T = I_C \oplus T_1$.

LEMMA 2. If $T_0 \in \mathcal{O}$ is nonsingular, then

$$\mathfrak{D}_{u} = T_{0} \mathfrak{O}^{A} = \mathfrak{O} T_{0}^{*};$$

$$T_{0}^{*} \mathfrak{O} = \mathfrak{O}^{A} T_{0} = I_{C} \oplus [\mathfrak{R}].$$

PROOF.
$$T \in \mathfrak{D}_u \Rightarrow T_0^{-1}Tu = 1 \oplus 0$$
 and $(T_0^{-1}T)^*(1 \oplus 0) = T^*T_0^{*-1}(1 \oplus 0)$
= $u \Rightarrow T_0^{-1}T \in \mathfrak{O}^A \Rightarrow T \in T_0\mathfrak{O}^A$. Thus $\mathfrak{D}_u \subseteq T_0\mathfrak{O}^A$. Similarly, $\mathfrak{D}_u \subseteq \mathfrak{O}T_0^*$.
 $S \in I_C \oplus [\mathfrak{R}] \Rightarrow T_0^{*-1}S(1 \oplus 0) = u$ and $(T_0^{*-1}S)^*u = S^*T_0^{-1}u = 1 \oplus 0$

 $\Rightarrow T_0^{*-1}S \in \mathcal{O} \Rightarrow S \in T_0^*\mathcal{O}$. Thus $I_C \oplus [\mathfrak{R}] \subseteq T_0^*\mathcal{O}$. Similarly, $I_C \oplus [\mathfrak{R}] \subseteq \mathcal{O}^A T_0$.

The opposite inclusions are clear.

Lemma 2 and the obvious inclusions, $\mathcal{O}\mathcal{O}^A \subseteq \mathcal{D}_u$, $\mathcal{O}^A \mathcal{O} \subseteq I_C \oplus [\mathfrak{X}]$, give the first part of the theorem.

To demonstrate the remainder of Theorem 2 we analyze the onedimensional member of \mathfrak{D}_u , J. It will be shown, among other things, that J is *unique*.

Since $J \in \mathfrak{D}_u$, Ju = u, and since the range of J is one-dimensional, u must generate that range. Then $Jx = \lambda_x u$ for each $x \in \mathfrak{R}$, where λ_x is a complex number dependent upon x. But

$$(Jx, u) = (\lambda_x u, u) = \lambda_x (u, u) = \lambda_x$$

and

$$(Jx, u) = (x, J*u) = (x, u)$$

showing that, in fact, Jx = (x, u)u. In particular, the mapping J is unique.

The following computation shows that J is self adjoint.

$$(Jx, y) = ((x, u)u, y) = (x, u)(u, y),$$

 $(J^*x, y) = (x, Jy) = (x, (y, u)u) = (x, u)(u, y),$

for all $x, y \in \mathcal{K}$. Furthermore, from

$$(TJx, y) = (T(x, u)u, y) = (x, u)(u, y)$$

and

$$(JTx, y) = (x, T^*J^*y) = (x, T^*Jy) = (x, T^*(y, u)u) = (x, u)(u, y),$$

it is clear that TJ = JT = J for all $T \in \mathfrak{D}_u$.

The next part of Theorem 2 will follow from Lemma 3:

LEMMA 3. Let X and Y be as in Theorem 2. Then

$$X[I_C \oplus 0_{\mathcal{H}}] = JX,$$
$$[I_C \oplus 0_{\mathcal{H}}]Y = YJ,$$

for all $X \in \mathfrak{X}, Y \in \mathfrak{Y}$. $0_{\mathfrak{X}}$ is the zero operator in $[\mathfrak{X}]$.

PROOF. Let $Yx = \mu_x \oplus h_x$, $x \in H$. Then

$$X[I_C \oplus 0_{\mathcal{H}}]Yx = X[I_C \oplus 0_{\mathcal{H}}](\mu_x \oplus h_x) = \mu_x X(1 \oplus 0),$$

showing that $X[I_c \oplus 0_{\mathcal{K}}]$ Y is one dimensional. Since $X[I_c \oplus 0_{\mathcal{K}}]Y \in \mathfrak{X}(\mathfrak{Y}\mathfrak{X})\mathfrak{Y} = \mathfrak{D}_u^2 = \mathfrak{D}_u$, it follows that $X[I_c \oplus 0_{\mathcal{K}}]Y = J$. Then, since $YX \in I_c \oplus [\mathfrak{K}]$, $YX = I_c \oplus T_1$ for some $T_1 \in [\mathfrak{K}]$. Then

$$JX = X[I_C \oplus 0_{\mathfrak{JC}}]YX = X[I_C \oplus 0_{\mathfrak{JC}}][I_C \oplus T_1] = X[I_C \oplus 0_{\mathfrak{JC}}].$$

Similarly, $YJ = [I_c \oplus 0_{3C}]Y$.

The proof in Theorem 2 may now be completed. Pick $X \in \mathfrak{X}$, $Y \in \mathfrak{Y}$ and let $X^*u = \rho_X \oplus k_X$. With the aid of Lemma 3, $[I_c \oplus 0_{3\mathfrak{C}}]X^*u = X^*Ju = X^*u$, i.e.,

$$\rho_X \oplus k_X = [I_C \oplus 0_{\mathcal{H}}](\rho_X \oplus k_X) = \rho_X \oplus 0.$$

Thus $X^*u = \rho_X \oplus 0 = \rho_X(1 \oplus 0)$. In the same way, $Yu = \rho_Y(1 \oplus 0)$, where ρ_Y may depend upon Y.

Since $XY \in \mathfrak{D}_u$,

$$(X^*u, Yu) = (u, XYu) = (u, u) = 1.$$

But

$$(X^*u, Yu) = (\rho_X(1 \oplus 0), \rho_Y(1 \oplus 0)) = \rho_X \bar{\rho}_Y$$

and, thus, $\rho_X \overline{\rho}_Y = 1$. By letting X vary over \mathfrak{X} and holding Y fixed, we conclude that $\rho_X = \overline{\rho}$, a constant for all X. Then $\rho_Y = \rho^{-1}$ for all Y. Of course, $\rho \neq 0$.

Since $X^*u = \bar{\rho}(1 \oplus 0)$ and $(XY)^* \in \mathfrak{D}_u^A = \mathfrak{D}_u$,

$$Y^*(1 \oplus 0) = \bar{\rho}^{-1}Y^*X^*u = \bar{\rho}^{-1}u.$$

Similarly, $X(1\oplus 0) = \rho X Y u = \rho u$. It follows that $X \in \rho \mathcal{O}$, $Y \in \rho^{-1} \mathcal{O}^A$, i.e., that $\mathfrak{X} \subseteq \rho \mathcal{O}$, $\mathfrak{Y} \subseteq \rho^{-1} \mathcal{O}^A$. If it happens that $\mathfrak{Y} = \mathfrak{X}^A$, then $\bar{\rho} = \rho^{-1}$ and we must have $|\rho| = 1$.

The inclusions may be proper. Suppose $\mathscr O$ contains three distinct nonsingular elements T_1 , T_2 , and T_3 . Define $\mathfrak X = \mathscr O - \{T_1\}$. By Lemma 2, $T_2 \mathfrak X^4 = \mathfrak D_u - \{T_2 T_1^*\}$. But, since $T_3 \neq T_2$, $T_3^{-1} T_2 T_1^* \neq T_1^*$ and it follows that $T_3^{-1} T_2 T_1^* \in \mathfrak X^4 = \mathfrak Y$. Whence $T_3(T_3^{-1} T_2 T_1^*) = T_2 T_1^* \in \mathfrak X \mathfrak Y$.

Similarly, $T_2^*\mathfrak{X} = \{I_C \oplus [\mathfrak{X}]\} - \{T_2^*T_1\}$ and, since $T_3^{*-1}T_2^*T_1 \in \mathfrak{X}$, it follows that $T_3^*(T_3^{*-1}T_2^*T_1) = T_2^*T_1 \in \mathfrak{YX}$. Thus $\mathfrak{D}_u = \mathfrak{XY}$ and $\mathfrak{YX} = I_C \oplus [\mathfrak{X}]$, even though $\mathfrak{X} \subset \mathfrak{P}$ and $\mathfrak{Y} \subset \mathfrak{P}^A$ properly.

REFERENCES

- 1. Marvin Marcus and Henryk Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, 1964.
- 2. Richard Sinkhorn, On the factor spaces of the complex doubly stochastic matrices, Abstract 62T-243, Notices Amer. Math. Soc. 9 (1962), 334-335.

University of Houston