FACTOR SETS FOR DOUBLY STOCHASTIC
OPERATORS ON A HILBERT SPACE

RICHARD SINKHORN

A doubly stochastic matrix is usually defined as an #X#% matrix
which has nonnegative elements and row and column sums one. If
the restriction on the nonnegativity of the elements is ignored, a
definition equivalent to the row-column sum condition can be given
which does not mention the elements at all. Let # be the n#-dimen-
sional column vector whose components are all equal to n~V/2. (We
have made ||«|| =1 for convenience.) An 7 X% matrix T will have row
and column sums one if and only if Tu=T*u=wu. In this paper we
shall use the term doubly stochastic to describe the members of this
larger class of matrices. We label this class D,.

In [2] the author gave a characterization of this matrix class in
terms of a certain factoring problem:

THEOREM 1. Let 1 ®0 denote the n-dimensional vector whose first com-
ponent equals one and whose remaining components all equal zero and
set

Co={TEM|TA®0) =u, T'u=16 0},
I, denoting the n Xn complex matrices. Then
Dy = Cr®Pr, CiCn=160 My,

and, in fact, if Xn, YoM, are such that Dy = XnYn, YnXn=1D My,
then there exists a complex number p =0 such that X,Cp®,, Ynp~'®;.
The inclusion may be proper. (A prime on a matrix denotes transpose.
A prime on a set of matrices denotes the collection of transposes in that
set.)

It is the intent of this paper to establish results of a similar nature
which are not dependent upon the finiteness of dimension. First,
then, we extend the notion of doubly stochastic to the infinite-
dimensional case.

Let 3¢ be an infinite-dimensional complex Hilbert space and fix
uE 1, ||u|| =1. The members of

D, = {TE[{}C]ITu=T*u=u}

are said to be doubly stochastic on 3C.
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The following theorem characterizes this generalized 9, in terms of
a certain set of mappings in [C® 3¢, 5¢], where C is the complex plane.

THEOREM 2. Let
e={rTclcoix]|TA®0) =u T* =1 v}.

Then D,=CC4, CACP=1cD [GC], where I¢ is the identity function on C.
In fact,if XC[CD, 3] and Y [3¢, CO®IC] are such that D,= XY,
YxX=Ic® [GC], then there is a complex number p#0 such that XCTp@®,
YCp~1@4. If, in addition, Y = X4, then |p| =1. In any event, the in-
clusions may be proper. (For any collection of mappings, X, X4 1s
used to denote the set of adjoints of the members of X.)

The first part of Theorem 2 is a consequence of the following two
lemmas:

LemMa 1. Ic® [5]={TE€[Cox]| T(100)=T*(160)=160}.

ProoF. Let T€ [CP 3] and pick kE 5. There exist uEC, K E 3R
such that T(0®h) =u®k’. Then if T*(190) =160,

(TO DK, 1H0)=0DkhT*1D0)=0k1®0) =0,
while, at the same time,
TODR,100)=wWeH,1d0) =4

Thus, p=0, showing that T(0® k) =0k,
Define T;: 3¢—3C by the rule T1h=4'. Clearly, T} is linear. Further-
more,

7| = [¥]] = llo ® #]| = |70 & W = [|7ll[l0 ® Al = ||| ],

showing that T is bounded with || T3|| £|| 7. Thus T2 € [3].
If T(1®0)=180, then, for any AEC, hE I,

TO®E =TA®0)+TO®E =2T1®0)+ (0& T1h)
=M1®0)+ 0D T1h) =\N® T1h= (Ic® T)(A ® ),
showing that T'=1® T.
LeEmMMA 2. If ToE @ is nonsingular, then
D, = To®4 = T,
T¢® = @AT, = Ic @ [5¢].

PROOF. TE D,= T35 Tu=1@0 and (T5T)*(180) = T*TE(1©0)
=u=Ti ! TEPA=TE To®4. Thus D,C To@4. Similarly, D,S0T;.
SEIH[X]=2TFS(1®0)=u and (TF1S)*u=S*Tru=160
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=STFISEP=SETF®. Thus Ie® [®R]CS T¢*E. Similarly, I [3c]
Ce4T.

The opposite inclusions are clear.

Lemma 2 and the obvious inclusions, PPAC D,, CAPCIc® [GC],
give the first part of the theorem.

To demonstrate the remainder of Theorem 2 we analyze the one-
dimensional member of D, J. It will be shown, among other things,
that J is unique.

Since JE D, Ju=u, and since the range of J is one-dimensional,
u must generate that range. Then Jx=M\.u for each x&3C, where A\,
is a complex number dependent upon x. But

(Jx: u) = O‘zu’ u) = A5‘('1"’ u) = )‘zy
and
(Jx, w) = (x, J*u) = (x, u)

showing that, in fact, Jx=(x, #)u. In particular, the mapping J is
unique.
The following computation shows that J is self adjoint.

U, 9) = ((x, Wu,y) = (=, u) (%, y),
(J*2,9) = (%, Jy) = (x, (9, W)u) = (z, 4)(%,3),
for all x, y&3C. Furthermore, from
(TTz,9) = (T(x, wu, y) = (x, u)(w, y)
and
Tz, y) = (x, T**y) = (z, T*y) = (x, T*(y, W) = (z, w)(%, ),

it is clear that TJ=JT =] for all T& D..
The next part of Theorem 2 will follow from Lemma 3:

LEMMA 3. Let X and  be as in Theorem 2. Then
X[Ic ® 05] = JX,
[Ic ® 05]Y = V7,
for all XE X, YEY. Oy is the zero operator in [3C].
ProoF. Let Yx=u,®h,, x€H. Then
X[Ic ® 050] V2 = X[Ic @ Ogp) (= @ k) = X1 © 0),

showing that X [Ic®0g] ¥ is one dimensional. Since X [Ic®05]Y
Ex(YX)Y=Di=9D,, it follows that X [I¢®05]Y =J. Then, since
YXEI:®[3], YX=I¢D T for some T1E€ [5¢]. Then
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JX = X[Ic ® Oge] YX = X[Ic @ Ogol[Ic ® Ti] = X[Ic ® 0gel.

Similarly, YJ=[Ic®05]Y. )

The proof in Theorem 2 may now be completed. Pick X€ x, Y&EY
and let X*u=px@kx. With the aid of Lemma 3, [Ic®05]X*x
=X*Ju=X*y,ie.,

px @ kx = [Ic (5} Ogc](PX ® kx) = px © 0.

Thus X*u=px®0=px(1®0). In the same way, Yu=py(100),
where py may depend upon Y.
Since XY€ED,,

(X*u, Yu) = (u, XYu) = (u,u) = 1.
But
(X*u, Yu) = (px(1 & 0), pr(1 & 0)) = pxbr

and, thus, pxpr=1. By letting X vary over & and holding Y fixed,
we conclude that px =5, a constant for all X. Then py=p~* for all Y.
Of course, p#0.

Since X*4=p5(1®0) and (XV)*€ 2t =9,,

Y*(1 ® 0) = p1V*X*u = 5'u.

Similarly, X(190)=pX Yu=pu. It follows that XESp®, Y Cp~ 104,
i.e., that XCp®, YCp~!@4. If it happens that Y= X4, then p=p~!
and we must have |p| =1.

The inclusions may be proper. Suppose @ contains three distinct
nonsingular elements T4, T3, and Ts. Define X =@ — {Tl} . By Lemma
2, T,%4=9,— {T,T#}. But, since T3Ts, Ti'ToT##TY and it
follows that T4 1T, T{#*E X4 = Y. Whence Ts(T;TszTfk) =TT E xLY.

Similarly, T&x= {ICEB [GC]} - { T2*T1} and, since T§ 1 T¥THEX,
it follows that T#(T#'T#Ty) =T+T1€YX. Thus D,=%XY and
yo=1Ic® [5], even though xC® and YC @4 properly.
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