A NEW PROOF OF THE BONNICE-KLEE THEOREM
JOHN R. REAY

The purpose of this note is to give a new (and much easier) proof
for a theorem of Bonnice-Klee [1]. Their result (Theorem 1 below)
has proved to be quite useful in establishing a number of results con-
cerning the convex hulls of certain sets (see [4]). It is a generalization
of the following two classic results due respectively to Carathéodory
and Steinitz.

(a) If X is a subset of an n-dimensional real linear space E*, and
pEcon X (the convex hull of X), then p&con U for some subset U
of X with card U (cardinality of U) at most n+1.

(b) If X CE", and pE€ int con X (the interior of con X), then
p€ int con U for some subset U of X with card U= 2n.

The generalization is based on the notion of intermediate interiors.
The d-interior of a set X CE" (denoted by int; X) is the set of all
points p such that p is in the relative interior of some d-simplex con-
tained in X; equivalently, pCint; X iff there exists a d-dimensional
flat F through p such that p is in the interior of XN\ F relative to F.
The result may be stated as

TeHEOREM 1. If X CE* 0 =d £ n, and p € inty con X, then
pE inty con U for some subset U of X with card U=<max(n+1, 2d).

Theorem 2 below was used in [4] as a tool to establish certain gen-
eralizations of the above result of Steinitz, and has also been used to
obtain uniquely-defined continuous representations of points in E*
in terms of an arbitrary positive basis. We will show that Theorem 1
of Bonnice-Klee is an easy consequence of Theorem 2. Set BC E"
positively spans E* if each point of E* is a positive combination (i.e.,
a linear combination with non-negative coefficients) of the points of
B. The set B is a positive basts of E* if it is also positively independent,
i.e., no element of B is a positive combination of the remaining ele-
ments of B. (See [2], [3].) The positive hull of set X, denoted by
pos X, is the set of all positive combinations of X.

THEOREM 2. Let B be any positive basis for E*. Then B admits a par-
tition into pair-wise disjoint subsets B=B,\\J - - - UBy (12kZn),

such that card Bz cardBin 22, 1=1,---, k—1, and
pos(B1\U - - - \UB,) is a linear subspace of E* of dimension
(>..card By)—jforj=1,2,-- -, k.
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We will sketch the proof of Theorem 2, since certain parts of the
machinery are needed in proving Theorem 1. It is well known that if
B is a positive basis for an n-dimensional space E, then 41 =<card B
=<2n. Set B is said to be minimal provided that card B=#n+1. A sub-
set B’ of an arbitrary positive basis B is in general not a positive basis
for a linear subspace. Following the notation of McKinney [3], we
say that a linear subspace F of E is a spanned subspace with respect
to B iff FN\B is a positive basis for F. If, moreover, FM\ B is a minimal
positive basis for F, then we say that F is a minimal subspace (with
respect to B). Davis [2] has shown that for each element b of a posi-
tive basis B, there exists a set B’ (not necessarily unique) such that
b&E B’ CB and pos B’ is a minimal subspace of E with respect to B.
Thus E always has at least one minimal subspace with respect to B.

Proor or THEOREM 2. Let B be a given positive basis for the space
E, and let B; be a subset of B of maximal cardinality such that B, is
a minimal positive basis for the minimal subspace pos B;. If B=B,,
the theorem is clear. Otherwise, let E; be a linear subspace of E such
that E=E;®pos B:1 (® means direct linear sum), and let m; be the
natural projection of E onto E,. It follows that m(B — B,) is a positive
basis for E;. Also, if B, is a subset of B— B; of maximal cardinality
such that mB; is a minimal positive basis for the minimal subspace
pos w1 By of F;, then it follows that card By = card B, and pos(B1\Jmr1B;)
=pos(B1\UB,). (See [4] for details of these arguments.) It is clear
that card By =card B, =2 and pos(B,\UB,) is a linear space of dimen-
sion card B;-+card B;—2. If B;\UB;=B the theorem is established.
Otherwise the same argument may be applied to the space E; and
the process repeated until B=B,\J : . . \UB,;, thus establishing
Theorem 2.

ProoF oF THEOREM 1. Suppose X C E*, 0 =d =%, and pE€intscon X.
With no loss of generality we may suppose that p =0. Let F denote
the largest linear space contained in pos X, and let m be the dimen-
sion of F. Then m=d because 0Cintscon X. It follows from the
maximality of m that (con X)N\F=con(XMNF). Thus we may restrict
our attention to the set X\ F in the linear space F, or equivalently,
we may assume that pos X =E= That is, X positively spans E".
Choose a subset B of X that is a positive basis for E», and let
B=B;U - - - \UB; be a partition of B as in Theorem 2. Then B, is a
minimal positive basis in B of maximal cardinality. Thus card B,
<n-+1.1f d <card B; then 0&intscon B; and we set U= By, establish-
ing Theorem 1. For the case of d = card By, let U=B,\UB,U . . - \UB;
where j is the least integer such that the dimension of the linear space

pos(Bi\UB,\U - - - \UB,) is at least d. It is clear that 0&intgcon U,
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and it only remains to show that card U=<max(z+1, 2d). Note that
d>dim pos(B;\J - - - UB;4) =(Q_iZicard B;)—(j—1). Thuscard U
=>4 _,card B;<d+(j—1)+card B; and it suffices to show that
(G—1)+card B;=d+1. But

1
dg(zcardB;>—(j—1)+lgcardBl+2(j—2)—(j—1)+1

i=1
=(j—1)+ card B, — 1.

So d4+1=(j—1)+4card Bj, which shows that card U=2d and thus
establishes Theorem 1.

REFERENCES

1. W. Bonnice and V. L. Klee, The generation of convex hulls, Math. Ann. 152
(1963), 1-29.

2. C. Davis, Theory of positive linear dependence, Amer. J. Math. 76 (1954),
733-746.

3. R. L. McKinney, Positive bases for linear spaces, Trans. Amer. Math. Soc. 103
(1962), 131-148.

4. J. R. Reay, Generalizations of a theorem of Carathéodory, Mem. Amer. Math.
Soc. No. 54 (1965).

WESTERN WASHINGTON STATE COLLEGE



