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The purpose of this note is to give a new (and much easier) proof

for a theorem of Bonnice-Klee [l]. Their result (Theorem 1 below)

has proved to be quite useful in establishing a number of results con-

cerning the convex hulls of certain sets (see [4]). It is a generalization

of the following two classic results due respectively to Carathéodory

and Steinitz.

(a) If X is a subset of an «-dimensional real linear space En, and

¿>Gcon X (the convex hull of X), then p(E.con U for some subset U

of X with card U (cardinality of U) at most « + 1.

(b) If XQE", and £G int con X (the interior of con X), then

£G int con U for some subset U of X with card U¿2n.

The generalization is based on the notion of intermediate interiors.

The d-interior of a set XQEn (denoted by inti X) is the set of all

points p such that p is in the relative interior of some d-simplex con-

tained in X; equivalently, £Gint<¡ X iff there exists a d-dimensional

flat F through p such that p is in the interior of Xf\ F relative to F.

The result may be stated as

Theorem 1. If X Q En, 0 ^ d ^ n, and p G int<¡ con X, then

PE. inti con U for some subset U of X with card U¿ma.x(n+Í, 2d).

Theorem 2 below was used in [4 ] as a tool to establish certain gen-

eralizations of the above result of Steinitz, and has also been used to

obtain uniquely-defined continuous representations of points in En

in terms of an arbitrary positive basis. We will show that Theorem 1

of Bonnice-Klee is an easy consequence of Theorem 2. Set BC.E"

positively spans En if each point of En is a positive combination (i.e.,

a linear combination with non-negative coefficients) of the points of

B. The set B is a positive basis of En if it is also positively independent,

i.e., no element of B is a positive combination of the remaining ele-

ments of B. (See [2], [3].) The positive hull of set X, denoted by

pos X, is the set of all positive combinations of X.

Theorem 2. Let B be any positive basis for En. Then B admits a par-

tition into pair-wise disjoint subsets B = BiU ■ ■ ■ UBk (likkun),

such that card 73,- ̂  card Bi+i 2: 2, i = 1, • • • , k — 1, and

pos(23i U • • • W B¡) is a linear subspace of En of dimension

Œ<=icard Bi)-jfor j = l, 2, ■ ■ • , k.
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We will sketch the proof of Theorem 2, since certain parts of the

machinery are needed in proving Theorem 1. It is well known that if

B is a positive basis for an «-dimensional space E, then n-\-1 ^card B

5= 2«. Set B is said to be minimal provided that card B — n +1. A sub-

set B' of an arbitrary positive basis B is in general not a positive basis

for a linear subspace. Following the notation of McKinney [3], we

say that a linear subspace F of E is a spanned subspace with respect

to B iff FfAB is a positive basis for F. If, moreover, FC\B is a minimal

positive basis for F, then we say that F is a minimal subspace (with

respect to B). Davis [2] has shown that for each element b of a posi-

tive basis B, there exists a set B' (not necessarily unique) such that

b(EB'(ZB and pos B' is a minimal subspace of E with respect to B.

Thus E always has at least one minimal subspace with respect to B.

Proof of Theorem 2. Let B be a given positive basis for the space

E, and let Bx be a subset of B of maximal cardinality such that Bx is

a minimal positive basis for the minimal subspace pos B\. If B = Bi,

the theorem is clear. Otherwise, let Ei be a linear subspace of E such

that E = £i©pos Bi (© means direct linear sum), and let wi be the

natural projection of E onto Ei. It follows that iri(B — Bi) is a positive

basis for Ei. Also, if B2 is a subset of B — Bi of maximal cardinality

such that iriB2 is a minimal positive basis for the minimal subspace

pos tiB2 oí Ei, then it follows that card Bi 2: card B2 and pos(5iUtiB2)

= pos(Bi{JB2). (See [4] for details of these arguments.) It is clear

that card .Bi^card B2^2 and pos(5iU52) is a linear space of dimen-

sion card 5i+card B2 — 2. If BX\JB2 = B the theorem is established.

Otherwise the same argument may be applied to the space Ei and

the process repeated until B = BX\J • • • VJBk, thus establishing

Theorem 2.

Proof of Theorem 1. Suppose X(ZEn,0^d^n, and pE. intdcon X.

With no loss of generality we may suppose that p = 0. Let F denote

the largest linear space contained in pos X, and let m be the dimen-

sion of F. Then m^d because 0£int<!con X. It follows from the

maximality of m that (con X)HiF = con(Xr\F). Thus we may restrict

our attention to the set XC\F in the linear space F, or equivalently,

we may assume that pos X = En. That is, X positively spans En.

Choose a subset B of X that is a positive basis for En, and let

B=B¿J • • • yJBic be a partition of B as in Theorem 2. Then B\ is a

minimal positive basis in B of maximal cardinality. Thus card Bi

^w + 1. If ¿<card 5i then OGintdCon 5iand we set U = Bi, establish-

ing Theorem 1. For the case of d^card Bi, let U = BX\JB2\J ■ ■ • KJBj

where j is the least integer such that the dimension of the linear space

pos(BiVJB2VJ ■ • ■ yJBA is at least d. It is clear that OÇintjcon JJ,
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and it only remains to show that card f/^max(w-r-l, 2d). Note that

¿>dimpos(PiVJ • • • WPy_i) = (picard S¿)-(/-I)-Thus card U

= y.Li card Bi<d-\-(j— l)+card B¡ and it suffices to show that

(j-l)+card Byáá+1. But

d ê ( £ card 5^ - (j - 1) + 1 è card^ + 20' - 2) - (j - 1) + 1

= (j- 1) + card Si- 1.

So d+1 è(j— l)+card Py, which shows that card U^2d and thus

establishes Theorem 1.
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