
GENERALIZED QUOTIENT RINGS

FRED RICHMAN1

1. Introduction. If A is an integral domain and S is a subset of A

not containing zero, then one can form the quotient ring A s which

lies between A and its quotient field. It is well known that As is flat

as an A -module. The motivation for this paper is to determine how

much the converse of this theorem holds. The objects of study are

therefore rings B between A and its quotient field which are flat as

A -modules. We obtain two characterizations of these "generalized

quotient rings" and show that they enjoy many of the properties of

ordinary quotient rings. Extensions related to quotient rings in the

same manner that invertible ideals are related to principal ideals

are also examined. A subsidiary result is a new characterization of

Prüfer rings.

The properties of flatness used in the sequel can be found in [l ] or

in the exercises of [2]. For standard results in commutative rings the

reader is referred to [3] and [4].

All rings will be integral domains. An extension B of a ring A will

mean an extension in the quotient field of A and will often simply be

indicated by the notation A CB. If A CB and I is an ideal of A, J

an ideal of B, then Ie will stand for the ideal in B generated by I, i.e.,

IB; J" will stand for the ideal JC\A of A. Where applicable, Y: ZX
stands for {z£Z| zXCZY] with the subscript Z omitted when obvi-

ous.

2. Characterizations. A natural point of departure is the study of

prime ideals. For the extension A CAS every prime ideal P of A has

the property that either P° = As or AsCAp. Dubbing this condition

on an extension good, we put it into more workable form.

Lemma 1. A CB is good if and only if (y'.x)B=B for all x/yEB.

Proof. Notice that if P is a prime ideal of A, then B(\_Ap if and

only if (y'.x) CP for some x/yEB. This, combined with the fact that

(y:x)B^B il and only if for some prime ideal P3(y''X), PB^B,

yields the lemma.

Remark. The observation that if {7,-} is a finite set of ideals of A

such that IjB=B for all j, then (C\I¡)B=B can be used to strengthen

the right-hand condition of the lemma.
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This condition characterizes generalized quotient rings.

Theorem 1. Let A be an integral domain, B a subalgebra of the quo-

tient field of A. A EB is good if and only if B is a flat A-module.

Proof. To show B is flat it suffices to show that the natural map

77 ®¿ B^>B is 1-1 for any ideal H of A. Suppose c = ^Ji¡®bj—»0,

A,-GT7, bjEB, i.e., £>A = °- Let I = C\(A:Abi). Clearly 7c = 0. But
by Lemma 1 and the remark, IB=B. Therefore Ic = 0=B0—BIc

= Bc and so c = 0.

Suppose B is flat. If x/yEB, then y-x/y—x-1 =0. Therefore there

exist aijEA and bjEB such that

1° x/y = Y¿auhh

2° 1 = Yflabf,
3° yaij—xa2j = 0.

If P is a prime ideal of A, then either a2]EP for all/, in which case by

2° PB=B, or for some j, a2j(£P, in which case by 3° x/y = aij/a2j

which is in AP.

Another characterization of generalized quotient rings shows that

they are determined by local properties. First we need a useful lemma.

Lemma 2. If AEB EC, then the following two implications hold.

(1) If A EC is flat, then BEC is flat.
(2) If AEB is flat and BEC is flat, then A EC is flat.

Proof. To prove (1) we note that if x/yEC, then (y'.Ax)C=Cand

so,&a fortiori, (y:Bx)C=C. (2) is a well-known property of flatness.

Theorem 2. Let A be an integral domain, B a subalgebra of the quo-

tient field of A. AEB is flat if and only if Bm = Amc\a for all maximal
ideals M of B.

Proof. If A EB is flat, then A EBm is flat and so AmhaEBm is

flat by Lemma 2. Suppose x/yEBM, x,yEAMr\A- Then (y.x)Bu

= BM and so (y:x) =Amha- Therefore x = ay, aEAMi-\A, and so

x/yEAuDA-

Suppose there exists x/y G B such that (y:x)B¿¿B. Let AO (y:x)B,

Af a maximal ideal of B. Clearly (y'.x)BM9iBM and so A EBm is not

flat and thus Bm^Amha-

Notice that the theorem and proof remain valid if the word "maxi-

mal" is replaced by the word "prime" throughout.

Corollary. Every flat extension is an intersection of localizations,

i.e. if AEB is flat, then B = C\AP where P runs over some set of prime

ideals of A.



796 FRED RICHMAN [August

The converse is false.

3. Extension and contraction of ideals. We now show that finite

intersections of primary ideals "behave right" under extension and

contraction and thus get a complete picture in the Noetherian case.

First a preliminary lemma.

Lemma 3. If AEB is flat, {Qj} is a finite set of primary ideals such

that Qj^B, P,- = Rad«?y) and I = ñQ¿, then P)^B and 7e = 7sfYB,
where S = A-UPj.

Proof. Clearly P)^B. Since A CB is flat, we have BCAs = Ç\APj.

Suppose t/sEIsC\B, i.e. tEI, sES and t/sEB. By the flatness of

B there exist aikEA and bkEB such that

1° t/s = Y^aikbk,

2° 1 = JjhJjk,
3° saik—ta2k = 0.

By 3° aikEQj and so by Io t/sEP. Clearly I'Ch^B.

Theorem 3. Let A be an integral domain, B a generalized quotient

ring of A, 23 the set of ideals of B admitting a finite primary representa-

tion, 21 the set of ideals of A admitting a finite primary representation

^Qj> Qj^B. Then e and c give a 1-1 correspondence between SI and 23

preserving prime ideals, primary ideals and finite intersections. Further-

more, if I is an ideal of A admitting a finite primary representation

DC;,-, \-ejun, where Q^B for lújúk and Qej = B for k<j^n, then
7ec = n<2i, í^júk.

Proof. Clearly c maps 23 into 21. Consider BEAs = C[Apj where

Pj runs over the radicals of the (finitely many) primary ideals in ques-

tion. Then P = IsC\B for all ideals 7 in question (Lemma 3). There-

fore e is the composite of extension into a quotient ring and contrac-

tion, both of which (since 5 is prime to all ideals in question) preserve

prime ideals, primary ideals and finite intesections. If 7 is an ideal in

21, then Ie" = iIsr\B)r\A =ISC\A =7 since 5 is prime to 7. If J is an

ideal in 23, then J"QJ. If t/sEJ, then tEJc. But J" = (Jc)SC\B and
so t/sEJce. Finally, if 7 is an ideal in 21 and K is an ideal of A such

thatP>=P, then iIC\K)"> = I. Indeed,

/ = J« 3 (/ r\ K)ec D iIK)ec = ilKB) r\A = IBr\A = P' = I.

Recalling Cohen's Theorem that a ring is Noetherian if every prime

ideal is finitely generated, we have as an immediate consequence:

Corollary. If A is Noetherian and A EB is flat, then B is Noether-
ian, every ideal of B is extended and an ideal I of A is contracted if and

only if no prime ideal belonging to I blows up in B.
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4. Integral dependence. Generalized quotient rings also respect

integral closure.

Proposition 1. Let A be an integral domain, B a generalized quotient

ring of A. Then B* = A*B is a generalized quotient ring of A*, where

X* is the integral closure of X.

Proof. That B*~2)A*B is trivial. Suppose xEB*, i.e. there exist

bjEB and a positive integer n such that xn-T-&n_iXn-1+ • • • +ô0 = 0.

Let I=C\A : Abj. Then IxCA* and IB = B. Therefore xB = xIBCA*B
and so xEA*B. Moreover, since ICA*:A*x and 773 = 73, (A*:A*x)B*
=73*.

Corollary. If A CB is flat and A is integrally closed, then B is
integrally closed.

We note the following relationship between generalized quotient

rings and integral dependence.

Proposition 2. 7/ A CB is flat and B is integral over A, then A=B.

Proof. If x/yEB, then (y:x)73=73 and so (y:x) =A since no proper

ideal blows up in an integral extension. Therefore x/yG^4.

5. In vertible extensions. Quotient rings are generated by elements

of the form \/s. In general, an extension generated by elements of the

form x/y where the ideal (x, y) is principal is a quotient ring. The

usual generalization of principal to invertible leads one to consider

invertible extensions A CB where 73 is generated by elements Xy/yy,

(xy, y,) an invertible ideal of A. Clearly every quotient ring is inverti-

ble and an invertible extension, being a direct limit of projective

modules, is flat. In particular, any extension of a Dedekind domain is

flat. By choosing A to be a Dedekind domain with nontorsion class

group, we can get a nontrivial example of a generalized quotient ring.

Indeed, let M be a maximal ideal of A such that Mn is not contained

in a principal ideal for any positive integer n and let 73 be generated

by M~x. If i/sEB lor sEA, then lEsM~" lor some positive integer n

and so MnC(s). Therefore (s)=A. Thus 73 contains no nontrivial

reciprocal of an element of A and so cannot be a quotient ring. These

are essentially the only examples we have.

It is unlikely that every flat extension is invertible. In the following

special case, however, we have equivalence.

Proposition 3. Let A be an integral domain, x/y an element of the

quotient field of A and B=A [x/y]. If B is flat and A is integrally
closed then the ideal (x, y) is invertible.
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Proof. Since A CB is flat, we have that (y :x)73 = 73, i.e. there exist

hjE(y'-x) such that hnXn/yn+hn-iXn~1/yn~1-r- ■ ■ • +hix/y+ho=l,

for some non-negative integer n. Multiplying by y"/x", we get that

y/x is integral over As, S= {(ho—I)}, and so y/xEAs since As is

integrally closed. Therefore y/x = h/(ho—l)' for some hEA and some

non-negative integer t, and so hx/y-\-aho = \ for some aEA, i.e.

(h/y)x+(aho/y)y = 1, where h/y and ah0/yE(x, y)-1.

If A is a unique factorization domain or has only finitely many

prime ideals, it is easily seen that any intersection of localizations is a

quotient ring. In particular, for this class of rings, every generalized

quotient ring is a quotient ring (and therefore invertible).

The most hopeful way of relating arbitrary flat extensions to in-

vertible extensions appears to be the following conjecture: If A CB

is flat and A^B, then there exists an element x/y in B but not in A such

that the ideal (x, y) is invertible. If this were true, then any flat exten-

sion could be realized by a transfinite sequence of invertible exten-

sions. Even when A is quasi-local and invertible reduces to principal,

this question does not seem to be easily settled. It is false for arbitrary

intersections of localizations of a local ring.

6. Prüfer rings. If A is a Prüfer ring, then any extension of A is

invertible and hence flat. We shall show this to be a characteristic

property of Prüfer rings.

Lemma 4. Let Rbea ring with exactly one maximal ideal M such that

every extension of R is flat. Then R is a valuation ring.

Proof. Suppose x/y^R, x, y£7?. Then (y :x) CM. Since 7?[x/y] is

flat, (y:x) blows up in 7?[x/y]. Therefore there exist myG-Wsuch that

mo+mix/y+ ■ • • +m„xn/yn=l, lor some positive integer n. Multi-

plying by yn/xn, we get that y/x is integral over 7?. But R [y/x] is

flat and so by Proposition 2, y/xER-

Theorem 4. If A is an integral domain such that every extension of A

into its quotient field is flat, then A is a Prüfer ring.

Proof. If 73 is an extension of Am for some maximal ideal M of A,

then A C B is flat and therefore by Lemma 2, A M C B is flat.There-

f ore A m is a valuation ring for any maximal ideal M of A by Lemma 4

and so A is a Prüfer ring.

We note that this theorem says that the weak global dimension of

a ring is no greater than one if every extension has weak dimension

zero and pose the question of whether this result can be extended to

higher dimensions.
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ON ASSOCIATIVE DIVISION ALGEBRAS
OF PRIME DEGREE1

A. A. ALBERT

In 1938 Richard Brauer showed2 that, if 35 is an associative divi-

sion algebra of degree five over its center %, there is a field Ä of degree

at most twelve over j$ such that the scalar extension 35 X Ä is a cyclic

algebra over Ä. Indeed $ = j5(ai, a2, a3), where ai is a root of a quad-

ratic equation over %, a2 is a root of a quadratic equation over g(ai),

and «3 is a root of a cubic equation over %(otx, a2). Since that time

there has been no progress in the study of the structure of associative

central division algebras of prime degree.

In view of Brauer's result it seems reasonable, as a first step in the

study of central division algebras 35 of prime degree p over %, to

consider the case where there is a quadratic field Ä over % such that

35ft is cyclic. Then 35ft = 35X$ has a subfield S which is cyclic of

degree p over $. The simplest subcase is that where 3 is actually

normal, but, of course, not cyclic over %. We shall treat this case

under the assumption that % has characteristic p, and shall prove

that then 35 is a cyclic algebra over g.

Our proof proceeds as follows. We are assuming that 35 is a central

division algebra of prime degree p over g and that $ = $(t) is a quad-

ratic extension of g. Let J be the automorphism of $ such that

¿7 = —t. Then we may extend 7 to an automorphism 7 of 35X$ such

that dJ = d for every d in 35. We are also assuming that there is an

element z in 35XÄ such that the field S = $(z) is not only cyclic over
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